


Introduction
I had fun with this course; it should be obvious from all the asides. Hope they are well received :)



Lecture 01 - Introduction to Functional Programming
Basic Computer Architecture

What Does the Program Look like Mid-execution?

Program State

Updating State

Programming Paradigms

Basic, Fortran: Some of the First

Computer model: processor talks to the RAM (take CMPUT 229 for a whole semester worth of this being
explained!)

Usually, we load the compiled program into RAM and execute it
Data can be stored to a location, changed, and "deleted" (overwritten)

Requires the idea of an assignment statement

At every phase of its execution, a program has state
Aside: can this be described as a subset of the cartesian product of all of the variables in the program

Side effects: who changed the state?

Unstructured programs use global variables that allow uncontrolled access to state
Aside: can this abstract all state management mechanism

Modern language encapsulate access, e.g. with objects

Functional programming is stateless
All about state transition

Each instruction/step in the program may change the state

Originally, programming was done in a assembly, but high-level languages became widely used, so having
really good compilers became important

High-level languages provide abstraction over the hardware, and may follow different paradigms

Still around (aaaaaa!!); in-use in older software
Basics has no loops; everything was done with goto s (229 throwback)

Structure of programs is more similar to assembly than more modern languages



Imperative: Algol → Pascal → C

Object-oriented: Smalltalk, Java, C++, Python

Functional: Lisp, Various Others

Logical: Prolog, Answer Set Programming

Program Concepts

Aside: loops and recursion are the basic powerful constructs that help us do things, and are two sides of the
same coin
Aside: is it possible to generalize loops, conditionals, goto, etc beyond "loop branches back and if branches
forward"?

More powerful and abstract over hardware

Still tied into the Processor ←→ RAM architecture

Object-oriented → everything is done through objects
Developed because greater organization is needed for large projects that purely imperative programming
cannot provide

The user of a class should not know (or need to know) how you implemented a class; they just need to use
the interface for the implementation that you provide and trust it does what it guarantees

Aside: similar approach as loop invariant is to program verification

We use mathematical concepts and structuring to solve programs: describe it in terms of functions!

This will be studied at length in this course

No variables representing memory or assignments

Everything is done by defining functions
Recursion is the main mechanism to do things

Code tends to be terse, with precise meaning

Uses the lambda calculus

A subset of logical language can be used as a programming language

Based on logical deduction

We tell the computer what to do instead of explaining how to do it
Aside: declarative vs. imperative divide

Example use: graph colouring (used to develop cases for four-colour theorem)

Syntax: how do we write them?
Formal: which texts form valid programs?



Fun - A Simple Functional Language

Syntax Terminology and Interpreters

Functions

Higher-order Functions

Semantics: what does our program mean?

Execution: what does the program actually do when rn?

A program is a collection of functions definitions

Functions are defined over lists and atoms
Aside: can atoms be abstracted away as constant functions → maybe?

Computation done by evaluating functions on given arguments

f(x, y) = x * x + y

= is read as "is defined as"
We can apply a function by replacing sides defined as equal
Can be done for any possible values of x and y when the function is applied, i.e.
∀x∀y, f(x, y) = x ∗ x + y

Lefthand side: f(x, y)

Righthand side: x ∗ x + y

An interpreter needs to (aside: can only?) do two things
Replace a function with its definition (lefthand → righthand)

Substitute variables with arguments provided to the function

Notice that we do not declare types; the programming is responsible for making sure the types are correct

Function: mapping f : A → B from domain (A) to co-domain (B)
f(a1, a2, …) : A1 × A2 × ⋯ → B (cartesian product)

Function definition: what a function does, e.g. f : x ↦ x2 (pure) or
f prints "Hello world" to the standard output (side-effect)

Aside: might be better to refer to pure functions as "functions" and impure functions as "methods" or
"procedures"

Function application: evaluation of the function for specific arguments

Total functions are defined over their whole domain
Partial functions are not

Function compositions: for f : A → B and g : C ⊇ B → D, g(f(x)) = g ∘ f : A → D



Types of Objects

Primitive Functions on Lists

Regular functions work on "atomic" data, but higher-order functions may input or output functions
themselves
E.g. ∘ is a higher-order function: ∘ : (A → B) × (C → D) → (A → D) (woah!)

Function composition enables concise and generic code

Aside: what other things (?) can be expressed like this? can every function/construct?

Aside: can all constructors/operators(?) be conceptualized this way? is this what they have to be?

Atoms: primitive, inseparable values, including integers and real numbers
Can be literals (numbers, characters, symbols etc) or identifiers (symbols representing a value)

The smallest unit of the program → cannot be split
The symbol atom is a sort of immutable string that exists is a sort of "runtime-level identifier": they are
directly comparable in O(1)

Aside: we can think of symbols as entries in a global enum

Aside: does it make sense as a language feature to have namespaces for symbols? or does this
defeat the whole purpose? Philosophically, what are symbols for?
Aside: symbols and enums are two sides of the same coin: we can think of an enum type as the
union type of a bunch of symbols

Lists: defined inductively
Empty list ()

If x1 … xn are lists of atoms, then (x1 … xn) is also a list

Nothing else is a list

Defn allows for arbitrary nesting → we can represent leaf-only trees with lists of lists where nested list
depth ←→ tree depth

Lists in programming stems from the need to represent our knowledge in terms of symbols

We use these to represent every type of data

We only need three primitive functions to fully manipulate the lists (aside: is there a generalizable reason
that just these three are necessary?)

first : returns the first element of the list
first : list[T ] → T  , first : (a1 … an) ↦ a1

rest : returns a list with everything but the first element (often abbreviated as r)
rest : list[T ] → list[T ], rest : (a1 … an) ↦ (a2 … an)

Note that even if there's one element in the list, we still return a list with one element in it

rest((a)) = (): rest of one element leads to an empty list ()

Composing first and rest can let us access any element of the list
E.g. third element: first  of rest  of rest

cons : constructs a list given the first element and the rest of the list
cons : T , list[T ] → list[T ], cons : X, (a1 … an) ↦ (X, a1 … an)



Other Primitive Functions

Writing Simple Programs

The second element can be empty → inserting the first element of the list

Any nested list can be constructed with cons
E.g. (a, (b)) = cons(a, cons(cons(b, () ), () ) )

Although we can now define any function with these, in practice, we "need" more functions to make "regular
programming" easier

What we have already is enough to build a Turing machine → we can simulate any function (in theory)

Useful primitives
Arithmetic operations: +, −, ∗, /

Comparison: <, >

if , then , and else  for conditionals

null(x) : true if x is an empty list, false otherwise

equality for atoms eq(x, y)
check if something is an atom atom(x)

Aside: what are all the possible such classes of functions in a programming language, and can any of these
primitives be implemented with others? what is the minimal set(s)?

count(L)  returns the number of elements in L, assuming L is a list

count(L) = 
if null(L) then 0
else 1 + count(r(L))

The program consists of a
Function definition of count(L)
Base case: L  is empty, so its length is 0
Recursive case: length is one plus the length of the rest  of the list

Aside: a basic model for computation: simple recursive function, analogous to while-loop
Base case → loop condition is satisfied

Recursive case → loop continue condition (condition false)

The evaluation of a program can be traced by performing each substitution step manually



Lecture 02 - Working with Lists

Implementing Simple List Functions

Member

member(x, L)  (abbreviated m )

Append

Binary Tree

Abstract data type: defining a data type by expressing invariants and desired operations mathematically
E.g. stack pop: Srest ∪ top → Srest

Framework for abstracting over primitive functions

L  is a flat list, x  is an atom → simple recursive search

Nested search → recurse if list, check equality if atom (multiple dispatch)

// list[any_1] list[any_2] -> list[any_1 | any_2]

app(L1, L2) = 
if null(L1) then L2
else app(rmlast L1, cons(last L1), L2)

rmlast(L) = 
if null(rest(L)) then first(L)

Binary Tree data structure: a tree where each node has 0, 1, or 2 elements
Nodes can be read, inserted, and removed from the tree

Main considerations
Decide how to represent the data structure with lists

Implement an abstract data type for binary trees and their operations as a set of mathematical
functions

The user interacts with the data structure with the functions, and shouldn't see the details of our
data representation



Lecture 03 - LISP Language Constructs

Accessing List Items

Functions in LISP

Function Examples

Append

Reverse (using append)

Two selectors and one constructor allow us to construct and manipulate any list-like structure made with
nodes

Any element of the list can be accessed by composing two functions
First element: car  (equivalent to first )

Rest of the list: cdr  (equivalent to rest )

The leftmost term in an s-expression is interpreted as a function that gets applied with the rest of the terms
as parameters

This first term can either be a primitive function, or a value that evaluates to a function

First-class functions: it is possible to write expressions that evaluate to functions

Functions are defined using defun  (define function)

(defun fun_name (params...) (body...))

Functions are defined by name and by their number of parameters (arity)

Top-down strategy for writing functions: write a general implementation of a function that may use helper
functions, then implement those helper functions, then theirs, etc.

(defun append (L1 L2)
(if (null L1)

L2
(cons (car L1) (append (cdr L1) L2))))



Cartesian Product

nil  In LISP

let  And Scoping

(defun reverse (L) 
(if (null L) 

L
(append (cdr L) (cons (car L) nil)))

(defun cartesian (L1, L2)
(if (null L1)

nil
(append (pair-all (car L) L2) 

(cartesian (cdr L1) L2)))

(defun pair-all (x L)
(if (null L)
nil
(cons (cons x (cons (car L) nil)) 

  (pair-all x (cdr L)))))

nil  represents an empty list (like empty  in Racket)

It is atomic, i.e. (atom nil)  evaluates to T  (true)
It is the unique falsy value; anything that is false (in a boolean sense) evaluates to nil

Aside: interesting way to handle falsy values

(let ((id_1 value_1) (id_2 value_2) ... ) (expression))

Creates one or many local bindings within the body of the let expression
Local binding: a value is bound to an identifier in a constant way, i.e. x  represents 3

The new bindings are in scope inside of the let  expression
Expressions can access the scopes of any let  body they are in → nested let  expressions allow
access to multiple (nested) scopes at the same time

If a deeply nested scope binds an identifier already bound in one of its ancestors, the innermost
binding is used, i.e. the most specific scope is preferred

The identifier in this case is re-bound; this is not the same as reassigning its value

let*  is a recursive version of let  where the identifier representing an expression can be accessed within
it

Use case: replacing a long expression used in any places with an identifier (also caches that evaluation)



Equality in LISP

Logical Connectives

Conditionals

cond

if

Aside: functions assigning arguments to their parameters when the function is applied is an example of a
local binding (it turns out this is used to implement let  itself)
Aside: many languages use {}  to denote block scoping; let  is essentially the LISP equivalent to that

The eq  function checks equality between atoms

The equal  function can check equality between values of any data type, including lists and s-expressions

and , or , not : the regular suspects

These have arbitrary arity

(cond 
(P1 x11 ... x1m)
(P2 x21 ... x2m)
(P3 xn1 ... xnm))

List of predicates and expressions after them; if the predicate evaluates to true, we evaluate the
expression(s) after it. Otherwise, we move to the next clause
Often, we just have one expression without the implicit begin

Should end with a default case where the predicate is just T

(if P1 e2 e3)

Evaluate the predicate P1 . If it's true, evaluate to e1 , otherwise e3
Equivalent to a cond  expression one predicate clause and a default clause



Lecture 05 - Dotted Pairs and Expressions

Dotted Pairs

Machine-level Representation

Symbolic Expression (s-expression): a generalization of atoms and lists that serves as the "universal"
LISP data structure

Recursive definition:
An atom is an s-expression

If x1 … xn are expressions, then the list (x1 … xn) is an s-expression

If x1 and x2 are s-expressions, then the dotted pair (x1. x2) are s-expressions

Dotted pair: expression formed by combining two non-list values
Think of a "box" with two "cells" that contain pointers to s-exp s, whose values can be accessed with
car  and cdr

Exposes the true, generalized nature of cons
The dotted pair is the, unique way to combine/structure data in LISP

Everything in LISP is stored this way

Aside: lists in LISP are an abstraction over dotted pairs chained together

; IDENTITIES: DOTTED PAIRS

(car (x . y)) -> x
(cdr (x . y)) -> y

Some dotted pairs are identical to some lists, i.e. if their car s and cdr s are the same
E.g. (a . nil)  is the same (a)

S-expressions in LISP can be one of two things:
Atoms

Dotted pairs

So, anything that isn't an atom is constructed with dotted pairs
E.g. A list is a dotted pair where the second cell is a list (possibly empty), i.e. a linear chain

Thus, lists in LISP are demonstrably linked lists

E.g. A tree is a dotted pair where both elements are (or have) lists

E.g. A function is a list of its name, parameters, body, etc (more on this later)

Aside: can every possible data structure in LISP be abstracted/generalized as one of the 2 × 2 ways to
place atoms and lists in a dotted pair structure?



Simplest Form

Simplest form: Representation with the least amount of dots
Aside: we can see list  as a function that prints an s-expression  in its simplest form

Aside: is a list always the simplest form of an expression

Aside: simplest form is more about a visual representation for us; the machine representation never
changes

(a . (b c)) ; example s-expression

; Full dotted-pair form
(a . (b . (c . nil)))

; simplest form
(a b c)

Generally, we can simplify/eliminate
Dots .  followed by open parentheses (



Storing Function Definitions

Dotted Pairs
Dot syntax: represents car  and cdr  in list notation, but doesn't require writing it out

Generalizing the Idea of cons

Justification: this is the "list nesting mechanism", so we can just represent this part as a list

Matching open/closed parentheses

Many different s-exp s may have the same simplest form, and are thus the same (this is an equality test)

Like any other s-exp , function definitions can be stored as dotted pairs

; (defun f-name (x y) (body))
'(defun . (f-name . (((x /) . (y /)) . (body . /))))

(1 . (2 . (3 . nil)))  corresponds to (list 1 2 3)

(a . b)  stands for a cons cell whose car  is the object a  and whose cdr  is the object b
Essentially a shortened, infix cons ?
Use case: makes it easier than regular list or '  syntax to declare lists with non- nil  terminator

Regular list syntax automatically assumes your list ends with nil

Some dotted pairs are identical to some lists

If a cdr  points to an atom, we cannot avoid using a dot (unless we write everything with cons )
If there are no dots, then the list is a proper list



Symbolic Expressions (s-expressions)

Func. Ion Definitions

We have been thinking of cons  as a list constructor, but it is more general than that

cons  is a "cell" that contains
car : a pointer to something
cdr : another pointer to something (often another list)

Symbolic expressions are a generalization of the expressions that can be in the lisp language

It is defined recursively
An atom is an s-expression (base case)

If x1 … xn are s-expressions, then (x1, … , xn) is an s-expression

If x1, x2 are s-expressions, then (x1. x2) is an s-expression

Stored like any other s-expression

Makes it easy to write higher order functions, which input and/or output other functions%%



Lecture 06 - Higher Order Functions
Higher-order Functions

Common Higher-order Functions

Software development tip: don't repeat yourself (DRY);

Can be done with higher-order functions by separating a computation pattern from the specific action
E.g. the pattern of iterating over a list and doing something to each element.

Without higher-order functions, any code doing this would have to be rewritten with a different action hard-
coded in

With higher-order functions, the function to apply can be passed in as a parameter to a function (here, map)
that applies it to each element

Map: apply the given function to every element in the list to get a new list

; map: T[n], (T -> S) -> S[n]

Separates the iteration over the list (generalized with map) and the action done on each element (left
as parameter, function to do this provided as argument)
Aside: mapcar  and mapcdr  exist and are useful in LISP

Aside: map  generalizes "structural recursion", i.e. when you join the current value and recursive call
with cons  to preserve the structure you are recursing over

; reduce call
(map (lambda (x) (x-body...)) L)

; ; equivalent structural-recusive function (sketch, no base case)
(defun rec-fun (L) 

(cons ((lambda (x) (x-body...)) (car L)) (rec-fun (cdr L))))

Reduce: combine elements of a list pairwise until they reduce to a non (or less nested) list

; reduce: T[n], ((T, T) -> T) -> T

The function's identity element may be provided; applying the identity and another argument should
return that argument (e.g. if the operation is ×, identity is 1)

However, most implementations (conveniently) stop the reduction after applying the reduction
function on the last two elements, instead of the last element and the identity
Aside: algebra time 😎

Aside: Reduce can be implemented left or right associatively, i.e. accumulated result is the first or
second argument in the function



First-class Functions as a Language Feature

Also known as fold-left/fold-right

Aside: reduce  (left) abstracts tail-recursion in the same way that map  abstracts iteration (i.e. recursion
with cons  connecting the recursive case)

So, if you use cons  as the reduction function, you get map

; reduce call
(reduce (lambda (x y) (xy-body...)) L)

; equivalent tail-recusive function (sketch, no base case)
(defun rec-fun (L) 

((lambda (x y) (xy-body...)) (car L) (rec-fun (cdr L))))

Mapreduce: a map followed by a reduction
This operation is often used in the real world (e.g. querying DBs), so a specific implementation for
mapreduce  may be more efficient then simply composing map  and reduce

Filter: uses a predicate function to remove elements from the list that the predicate finds false

; filter: T[n], (T -> boolean) -> T[m <= n]

Aside: LISP's "filter" functions are named remove-if  and remove-if-not

Most languages have some syntactic barrier between regular variable use and function application that
makes them easy to identify; LISP does not have this at the syntax level

I.e. function applications "look like" using variables

Builtin functions and LISP: apply  and funcall  apply functions from lists of arguments
Difference: apply  takes a list of arguments, funcall  takes them as parameters. They are syntactic
sugar over the same functionality

Aside: this is an explicit instruction to LISP that a function is being applied; not fancy parsing is
necessary
Aside: are regular function applications syntactic sugar over this, or are these syntactic sugar over
regular applications?

Aside: what are the implications of abstracting function application as a function itself?



Lecture 07 - λ Calculus I
lambda-cal.pdf

lambda-reductions.pdf

Lambda Calculus

Lambda Functions

At first, computers just did numerical computation, like one would on a (fancy) calculator
Later, we extended computation to include the manipulation of symbols, i.e. programming

Aside: in pure functional programming, any/every computation is a (complex) nested succession of
function applications

Since lisp is an early language, its λ calculus implementation is a bit awkward

Aside: λ is the best greek letter, fight me

Pure lisp is already small (in terms of number of primitives), but the lambda calculus is even smaller
The lambda calculus is a minimal but complete model of computation (!)

Similar in ideal to how a Turing machine is a conceptually simple model of complete computation

Motivation/Derivation: get rid of named functions: everything is anonymous functions

Lambda functions are anonymous functions, i.e. functions that are not bound to an identifier
Aside: in LISP, function definitions are just syntactic sugar (?) over binding a lambda function to a name
in a let  expression
Aside: naming functions makes things much easier to keep track of in programs, but these can all be
substituted in for anonymous functions without difference

Defining a lambda function is same process as using a literal like 2  or 'a  somewhere in a program without
binding it

; LISP syntax: Lambda expression
(lambda (arg1 ... argn) (body ...))

; LISP syntax: Lambda application
((lambda (arg1 ... argn) (body ...)) arg1 ... argn)

Often, a lambda function is evaluated instantly
Aside: this is a design pattern called left-left-lambda

Lambda functions can also be called with arguments with funcall  and apply
Aside: A closure is generated when a lambda function is defined; when the function is applied, that closure
information is fetched and used (more on this later)



Internal Representation

Syntax of the Lambda Calculus

Land of 10,000 Asides

The function  function in LISP takes a lambda expression and returns an internal representation of that
definition

; function function application 
(function (lambda (x) (+ x 1)))

; result
#<FUNCTION (LAMBDA (X)) {11EAF6E5}>

Aside: what LISP language construct is #<...> ?

Aside: how is a function body "hashed", like in this example?

The lambda calculus is a minimal, abstract formal language/model of computation with only four
constructs

Functions: [function] := (lambda (x) [expression])
LISP equivalent: lambda functions

Applications: [application] := ([expression] [expression])
Same syntax as LISP (!)

Expressions: [expression] := [identifiers] | [application] | [function]
LISP equivalent: s-expressions

Identifiers: [identifiers] := a | b | c | ...
LISP equivalent: atoms

Aside: in terms of programming language design, we can think of this as being the simple possible set of
core language features; we can create the rest of the language concepts using syntactic sugar

Aside: the syntax of programming languages (and other similar, complicated concepts) are most elegantly
and succinctly described through mutual recursion; analyzing the structure of this recursion yields insights
on how the language works

Mutual recursion between function  and expression
Mutual recursion between expression  and application

identifier  is not recursive: implies all λ calculus programs consist of identifiers  and syntax

Different "cases" of (possibly mutual) recursion apply to different "language concepts", i.e. in
expression , nested functions ( application  case) and higher order functions ( function  case)

Aside: is there a way to formally define and generalize "language concepts" by analyzing this
"recursion graph"? Are "recursion graphs" a thing (aside: this graph is cyclic iff recursion)



Currying

Procedure

Application

Reductions in Lambda Calculus
Lambda Reduction Examples

An n-ary function can be defined in terms of unary (higher-order) functions; this procedure is currying
Aside: It is a "reverse abstraction" for multivariate functions

; greater than function
; no currying
(lambda (x y) (> x y))
; curried version
(lambda (x) (lambda (y) (> x y)))

; curried application
; aruments: arg-x, arg-y
((lambda (x) ((lambda (y) (> x y)) arg-y)) arg-x)

Uses the property that applying a function binds parameters to arguments in the scope of the function body
The "parameters" that aren't defined in the current lambda function are "hardcoded" into the function
definition by virtue of being defined in the scope of the definition of the new lambda function

We if have a function f : X × Y × Z → D, we "split" it into f : X → (Y × Z → D), where (Y × Z → D) is a
function mapping Y × Z → D.
Now, we have a function with one argument that maps to a function with two arguments, which in turn maps
to one argument

We keep on "splitting" this second function until all the fns have one argument: f : X → Y → Z → D

Our function application now looks like f(x)(y)(z) instead of f(x, y, z)

Applying a curried function will lead to a set of nested funcall , function , and lambda  expressions for
each parameter

Example here lambda-cal.pdf

A reduction is a step in the process of evaluating an expression
In Lambda Calculus, all reductions happen in lambda expressions, since the syntax consists only of
these and (irreducible) atoms

Operational semantics: the process and underlying idea of reducing the language to a value
In Lambda Calculus, this is done with substitutions

LC does not need built-in primitive functions and atoms; they can all be constructed (e.g. N)



Beta-reduction

Alpha-reduction

Free and Bound Variables

Beta vs. Alpha Use-case

This is non-trivial, but possible

CS 245 / CMPUT 272 flashback!!

Beta (β) reduction: given an expression, replace all occurrences of parameters with the argument specified
Equivalent to function application and eager evaluation

; LISP expression
((lambda (x) (+ x 1)) a)
; beta-reduced LISP expression
(+ a 1)

Reductions may actually lead to more complex expressions (i.e. replacing an identifier with a long
expression many times in a function definition), so reduction is unstable, and a simplest form is not
guaranteed

Alpha (α) reduction: renaming a variable that is already bound
Changing the name of bound variables doesn't affect computation

We want to assure that a naming conflict does not happen
Aside: choosing names to avoid conflict is called hygiene

A bound variable is defined in the local scope; a free variable is not

"free" and "bound" are not absolute; they depend on the scope
Thus, changing the names of free variables may cause naming conflicts, since we don't know what
naming conflicts exist in the superscope. Thus, renaming a free variable to a bound one could lead to a
naming conflict

Global variables are bound in every scope, including the top-level (global) one

We need alpha reduction for cases when direct reduction fails due to naming conflict:

((lambda (x) (lambda (z) (x z))) z)
; both a bound z in the lambdas and a free z as a parameter

Notice if we blindly use beta-reduction, we get



Lambda Normal Form

; direct substitution without renaming
((lambda (x) (lambda (z) (x z))) z)
; sub x -> z
(lambda (z) (z z))
; naming conflict! big L!

Reduction use: we use alpha reduction to rename bound variables in the local scope that conflict with
superscope variables, then use beta reduction to evaluate the functions

This is known as correct beta-reduction
Aside: we can prove functions are different by beta-reducing them, since reduction (by definition) preserves
the meaning/result (semantics?) of the function

A lambda expression that cannot be further reduced by beta reduction is in normal form
Not all lambda expressions can be reduced to a normal form; sometimes the reduction forms an infinite
loop.

E.g. ((lambda (x) (x x)) (lambda (z) (z z)))  does not have a normal form; doing α then β
substitution yields the same function

Aside: do we prove irreducibility by showing that a reduction leads to a value already found in the
"reduction chain"?

Aside: there are other examples of expressions that keep expanding as well; types of these
expressions are essential for encoding recursive functions (e.g. the Y combinator)



Lecture 08 - λ Calculus II, Electric Boogaloo
lambda-reductions.pdf

Lambda Calculus Cont.

Order of Reduction

Normal Order Reduction (NOR)

Applicative Order Reduction (AOR)

Church-Rosser Theorem

In which order should we reduce nested function applications?
Aside: this is a fundamental choice one can make while designing a programming language

Generally, the leftmost function needing reduction is reduced first

Normal Order Reduction (NOR): evaluate the leftmost outermost function application
I.e. evaluate the outer function, only evaluate the arguments when you need to

Known as lazy evaluation

f(g(2)) -> g(2) + g(2) -> 3 + g(2) -> 3 + 3 -> 6

May terminate in cases are AOR does not, i.e. an infinitely recursive function nested inside a constant
function (since the constant function is evaluated first)

Applicative Order Reduction (AOR): evaluate the leftmost innermost function application
I.e. evaluate arguments before function

Known as eager evaluation
Most programming languages evaluate this way

Aside: is the reason only functional programming languages have non-eager evaluation because of
pure-functional languages having no side-effects? How can this idea be expressed formally?

f(g(2)) -> f(3) -> 3 + 3 -> 6

Is generally more efficient; note that g(2) is evaluated once under AOR, but twice under NOR

Church-Rosser Theorem



Recursive Primitives
Church Encoding on Wikipedia

Primitive Functions

Natural Numbers

Numeric ("shorthand") Symbolic Functional

0 0 (λsx ∣ x)

1 s(0) (λsx ∣ sx)

2 s(s(0)) (λsx ∣ s(sx))

… … …

n s(… s(0) …) (λsx ∣ s(… (sx) …))

where → means a sequence of 0 or more reduction steps

Church-Rosser Theorem on Wikipdia

1. If A → B and A → C, then there exists an expression D such that B → D and C → D

True even if A doesn't have a normal form

2. If A has a normal form E, then there is a normal order reduction A → E

NOR guarantees termination if the given expression has a normal form

Aside: Church-Rosser doesn't indicate whether a normal form exists or how many steps we would need to
find it; that question is undecidable (its reducibility to the halting problem is evident)

Programming is tied to representation; a problem is given in one form, and our responsibility is to encode
into a different form that the computer can interpret

All primitive functions are syntactic sugar over the lambda calculus (or another model)

Natural numbers are recursively built from 0 by the successor function s(n); we have s : n ↦ n + 1, so any
natural number can be represented by n nested s(n) functions around 0

n ∈ N represented functionally the anonymous (lambda) function that takes the successor function s and a
"dummy parameter" x as parameters, and nests s n times around x

This function isn't meant to be applied; it represents the number in an of itself.

Thus, the successor function in lambda calculus is SUC: s = (λxsz | s(xsz)) , where z  is the parameter
representing the number whose successor we are trying to compute.

Aside: formally, a successor function S : N → N is any function with the following properties
For all x ∈ N, S(x) ≠ x

http://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem


Addition

Control Flow

Logical Connectives

S is one-to-one, i.e. S(x) = S(y) ⟹ x = y

There exists some e ∈ N such that, for all x ∈ N, S(x) ≠ e

Aside: is this function unique?

We can implement addition with the successor function:

ADD = (λwzsx | ws(zsx))

Here, w  and z  represent the numbers we are adding

Performing this reduction manually reveals that this applies the successor s  function to z  w  times, i.e.
performing the repeated +1 that defines addition

Conditionals and control flow can be implemented by defining two truth values (true/false) as functional
expressions, then choosing control flow based on the outcome of a boolean expression

Aside: this ties into boolean algebras, since "two truth values" (and logical connectives, it turns out) are
abstracted by boolean algebras

T = (λxy | x)
F = (λxy | y)

IF = (λxyz | xyz)

Here, we're defining true or false as functions that return either their first or second arguments, and IF
simply applies its arguments to the given function (boolean value)

Aside: it seems like values (e.g. T , F , etc.) are defined as simple, non-recursive lambda-expressions,
whereas functions (eg. ADD  are defined as recursive ones)
Aside: is there something in the function definition of IF  that makes it "control flow", different from just
a "function"? Of course, assembly indicates how control flows can be explained as jumps
backward/forward, etc. There's lots of asides here, more in the Assignment 2 (Interpreter) Autopsy

Having defined T  and F , we can define logical connectives like NOT , AND , and OR  as well

NOT = (λx | xFT)

AND = (λxy | xyF)
OR = (λxy | xTy)



Boolean Functions

Recursion, Generalized

Combinators

Aside: it is clear that the structure of the function bodies of AND  and OR  mirrors the "reduction rules" for
and  and or  in racket explained in CS 135
Aside: is there something that makes and  and or  "fundamental" in logic that is apparent when they are
expressed this way?

Aside: can all 222

= 16 logical connectives be expressed this way, i.e. as a simple string of x , y , and T|F ?
(I don't think it can). What does it mean if a connective can't? Are all combinations of these valid
connectives?
Aside: it's interesting how these definitions encode the "trueness" of OR  and "falseness" of AND , almost like
"default values" if no arguments are provided (once again, like the racket reduction rules). Most rigorous CS
student logic.

E.g. ZEROT , which test if a value is 0
Aside: these granular functions seem quite similar to the assembly instructions that "build up" all of
imperative programming. Is there a minimal set of those? And why are those connections there, even
though the models of computation involved are very different? Do all computational models share
similarities? (later note: SECD machine answers this a bit)

ZEROT = (λx | x F NOT F)

If x  is anything other than the function representing 0, the function representing the number will not "throw
out" the first F , leading to a negation of NOT F  → F
Aside: these definitions of functions are incredibly interesting; I should look up more

Foundationally, recursion is a mechanism that can execute the same code repeatedly, with possibly different
parameter values

Aside: won't parameter values always be different, or an infinite loop occurs (in a pure functional
language)?

Thus, we need to create a lambda expression that can produce its argument repeatedly

All recursive functions can be defined in terms of a few functions, called combinators
Aside: !!!!!!!!!!!!!
Aside: again, analogy to any program being expressible by ~12 assembly instructions

The Y-combinator generates an arbitrary amount of copies of the expression it is applied to
Aside: the Y-combinator generalizes recursion by allowing a function to "call" (really, replicate) itself
without referring to its own name

https://nzurek.dev/documents/pdf/CS135%20Course%20Notes.pdf


// DEFINITION
Y = (λy | (λx|y(xx)) (λx|y(xx)))

// APPLICATION
Y N = (Ly | (Lx|y(xx)) (Lx|y(xx))) N  
      -> (Lx|N(xx)) (Lx|N(xx)))  
      -> N ((Lx|N(xx)) (Lx|N(xx)))  
      -> N (N ((Lx|N(xx)) (Lx|N(xx))))  
      ...

More (notationally) conveniently, we get N(YN)  → N(N(YN))  → N(N(N(YN))) , etc

NOR must be applied on the reduction for it to terminate
Aside: this seems to be true of recursion in general; I think this is why functions used for recursion are
defined weirdly, i.e. if  doesn't evaluate all its arguments and and  and or  are short-circuitable



Lecture 09 - Context and Closure
context-based-intepreter.pdf

Context and Closure

Deferred Substitution

Eval  Walkthrough

Our regular reduction strategy is inefficient; we can improve reduction efficiency by deferring the evaluation
of expressions until we need them, which is achieved using context and closure
This is known as deferred evaluation or lazy evaluation

Aside: almost seems like a queue; values are cached to the expressions they are bound to, and these
whole expressions are stored in the context. Then, when the bound value is called, that expression is
evaluated, possibly adding more to the context. This seems to be a complete (yet elegant) way to
evaluate only what needs to be evaluated

A context is a list of (current) bindings n1 → v1, … , nk → vk where ni are identifiers and and vi are
expressions (note: not necessarily atoms)

The expressions v1 … vk may also be closures; these data structures are mutually recursive

A closure is a pair [λ, CT], where λ is a lambda function and CT is a (possibly empty) context
When a function is applied, we know its parameters and definition from λ, and the values for body
variables from CT

Closures "close" open (free) variables by binding them to values

Closures result from evaluating lambda functions, i.e. the context gets stored

In LISP, a dotted pair is used to store closures

Functions, including interpreters, need the "current" context to be evaluated properly
Aside: I think we're about to explain that we can pass the current environment as an accumulated
stack-like parameter recursively, where new bindings are pushed to the start (which makes nested
scoping easy). This seems equivalent to having a global "store" that maps variable names to values,
and is mutated. Is it?

Static scope: scope is determined by the structure of the code, i.e. the blocks of the current expression
from inner → outer

Dynamic scope: scope is determined by the current state of the environment/store

Substitution is delayed until required using contexts and closures

E.g. λx | (+ x 4)) 2
Old method: we beta-reduce this by substituting x  with 2  directly to get (+ 2 4)
New method: we don't change the function body, but we record the binding x -> 2  in the context



Asides

Function Application in a Context

Asides: let

Evaluation starts with an empty context, since no bindings have been created yet
Aside: In a sense, all syntactic sugar functions in LISP are bindings of their names to function
definitions in the global context; global constants are as well. So, the initial context isn't actually empty

When a function is applied,
Its arguments are evaluated in the current context

The function body is evaluated in the current context
The context is extended

Parameter names are bound to arguments (aside: using let ?)

The context is extended by adding the new bindings; this forms the new context
Body is evaluated in new context

Aside: pattern of checking which type of function we are evaluating, then calling whatever we need to
(usually the native version of that function): dispatch
Aside: pattern of constructing an expression to evaluate recursively in terms of the language we are
interpreting: syntactic sugar/surface syntax

Aside: is this a formal-ish defn of this?

Aside: what is a recursive block? Can a function refer to its own identifier to call itself recursively? Can this
be considered a programming language feature? Can other programming features/patterns be
generalized/described as this?

Aside: we are using dotted pairs for let ; lisp uses lists. Ours is a bit easier to use
Aside: we can write let as a lambda function application; this seems to imply that it's not lambda  that has a
hidden let statement, but let  that has a hidden lambda function. It seems that the generalization flows
towards functions, which shouldn't surprise me in a functional language

; let 
(let ((x1 e1) ... (xn en)) e)
; lambda function equivalent to let
((lambda (x1 ... xk) e) e1 ... ek)



Lecture 10 - "Interpreter? I barely know her!"
context-based-intepreter.pdf

Implementing a Context for Our Interpreter

The eval  Function

Evaluation Patterns

Simple Cases

Context data structure: two lists, one of names and one of values, where each pairwise elements
correspond (essentially, an association list)

Bindings are added by appending (pushing) to the list with cons  and removed by replacing the list with
its cdr  (popping)
The list is searched left→right to find bindings

This solves the re-binding problem, since the newest binding is leftmost in the list and will be
found first. When this gets removed, the old binding still remains! So elegant!

Aside: LISP lists are actually stacks, where cons  ⇔ push  and cdr  ⇔ pop
Aside: this is analogous to the call stack in an imperative runtime model

We will define a function eval  to evaluate any s-expression; this is our interpreter
As such, it is not part of the language we wish to interpret

Aside: when should we conceptualize eval  as a "regular" function vs. something else?

eval[e, n, v]  evaluates expression e  in the context defined by name list n  and value list v
Like any language-syntax concept, evaluation patterns are recursive; generally, we call eval  on the
arguments, then defer to the implementation language (and possibly a custom implementation) to
interprets the function itself (dispatch pattern)
A helper function evalList  that calls eval  on each element is useful for evaluating arguments

Constants c : just return c
Variables x : look x  up in the name list, return the corresponding v  in the variable list

Remember, "pushing" to the context when entering a scope assures that most current definition and/or
binding of the variable is used

Aside: "pushing" to context and entering a scope are definitionally the same thing, right?

Arithmetic, relational, structural expressions: call eval on all the arguments, then call the corresponding
function in LISP (dispatch pattern)

E.g. eval[(⨁ e1 e2), n, v]  → eval[e1, v, n] ⨁ eval[e2, n, v]

Conditional expressions: we use the built-in if  statements in our implementation language



Functions

Scoping

We always evaluate the condition (first expression)

We don't want to evaluate the part that the conditional doesn't evaluate to, since by definition it won't
be used, will reduce performance, and may cause an infinite loop

Aside: this means if  isn't a "true function", as established in previous asides

Lambda functions: evaluate to a closure which contains the function body, variable list, and the context
when the function was defined

Parts of a closure C : params(C) , body(C) , names(C) , values(C)
names(C)  and values(C)  form the context
We can store this in a a pair of dotted pairs, then define accessor functions for them

Function applications: require updating the context and pushing to the stack, since we are evaluating a
closure that has its own bindings; we push these onto the stack

We evaluate the body of the closure in the new environment created by appending (with cons ) the
names and values of the closure to the existing environment

Aside: we have an eval(x)  → eval(y)  situation, i.e. we call eval  again, just with new arguments.
This is kinda a different "type" of recursion

Aside: I think this might be the characterization of syntactic sugar; a function is syntactic sugar if
and only if it is evaluated by a directly recursive call to the evaluation function using other
language constructs

Aside: I stumbled through this implementation before reading this slides (nice!); I learned that an
environment system is necessary to implement function applications

C = eval[e, n, v]
z = evalList[(e1 ... ek), n, v]

eval[(e e1 ... ek), n, v] ->

eval[
body(C),
cons(params(C), names(C)),
cons(z, values(C))

]

As know, let  is a special case of function application where the bindings we define in let  become the
parameter-argument bindings of the function application, and the body of the let  expression is just the
body of the function

Aside: a let  expression is just a closure, but where the body is defined at evaluation time, almost like
being passed as a parameter

Aside: this confirms that let  is a type of function definition, as opposed to function applications being
surface syntax that use let  during desugaring



Evaluating let  simply appends the let 's bindings to the context, then evaluates the body
Aside: another instance of eval(x)  → eval(y)  recursion

z = evalList[(e1 ... ek), n, v]

eval[(let (x1.e1) ... (xk.ek) e), n, v] -> eval[e, cons((x1 ... xk), n), cons(z, v)]



Lecture 11 - SECD "Architecture"
SECD Machine.pdf

Execution

Stacks 💸

Structure

Purpose: to execute compiled code on an abstract machine

Think JVM: we compile the program to bytecode, which runs on a virtual machine that maps onto the host
machine's instruction set

Thus, we can compile once to bytecode, then compile to whatever assembly language we need.
Compilation can also include optimizations as well

The SECD "language" is a language formed of operators, constants, variables (?), and built-in functions,
intended as a compilation target for functional languages

The SECD "machine"/"runtime" is a model for executing programs written in the "SECD language" using
four stacks
Aside: I wonder how hard this would be to implement as a Turing machine

The SECD machine is built using four stacks
Each stack can be represented by an list s-expression, where the top of the stack is the first element of the
list

Asides: this isn't representation, as much as LISP "lists" are stacks

The evaluation stack is used to evaluate expressions
To perform an operation is to pop elements from s, perform the operation, then put the result back on s

For unary op, we have (a. s) e (OP. c) d → ((OPa). s) e c d

When evaluation is done recursively, sub-expressions are pushed to this stack each time they are
called

Since SECD uses reverse Polish notation, the structure of the recursion is reflected in the stack, so the
result of the evaluation of a subexpression will be on the right place in the stack to be used to compute
the expression it is a part of

The environment is used to keep track of bindings
Aside: see, I told you environments lend themselves to being stacks!

The control is used to store instructions
In the program's initial state, the entire program is loaded into the control stack, and the rest of the
stacks are empty

The dump is used to store suspended invocation context, i.e. eval that we will come back to later
Analogous to the call stack in C-style languages



Operations

OP Description Definition Explanation

NIL push a nil  
pointer

s e (NIL.c) d → (NIL. s) e c d moves a nil  pointer from the 
control stack to the evaluation stack

LD load from the 
environment

s e (LD(i. j). c) d → (locate((i. j), e). s) e c d uses locate  (auxiliary function) to 
find the value of a variable in the 
environment

LDC load constant s e ((LDCx). c) d → (x. s) e c d moves a constant from the control 
stack to the evaluation stack

LDF load function s e ((LDFf). c) d → ((f. e). s) e c d Adds function to eval stack from 
control stack

AP apply function ((f. e′)v. s) e (AP . c) d → NIL (v. e′) f (sec. d) applies a function, analogous to a 
JAL  instruction

RTN return (x. z) e′ (RTN. q) (sec. d) → (x. s) e c d restores the environment from 
when the fn was called

SEL select in if-
statement

(x. s) e ((SEL ct cf). c) d → s e c′ (c. d)) delegated to to compile if-
statements, since they require 
special compilation to not execute 
both paths

JOIN rejoin main 
control

s e (JOIN. c) (cr. d) → s e cr d used with SEL ; adds what was in 
the dump stack to the control stack

RAP recursive apply 
(details omitted)

DUM create a dummy 
env

used with RAP

E.g. when compiling an if-statement, the dump stack is used to store the rest of the control stack while
the control inside the chosen if-statement boy is compiled
E.g. when compiling a function application, the whole eval stack, environment, and control stacks are
appended to the dump stack, then restored when we return from the function application's scope

An operation is like an assembly instruction; it is defined in terms of its effect on the four stacks, i.e.
s e c d → s′ e′ c′ d′

Aside: we can think of the state of the program as the state of the four stacks; this makes the
operations state transitions/reducers

Aside: operations define reductions, analogous to the reductions we make in lambda calculus
Aside: Just realized why the reducer pattern (common in React.js, for example) is named as it is;
due to the link between reduction in things like lambda calculus and thinks like the SECD machine

Aside: reductions can define a sort of "graph structure"; how can we analyze that to gain insights
about the reduction/evaluation process?

Reminder: these stacks are formed of dotted pairs; we will use dotted pairs in the definitions (e.g. (NIL. s)

pushes NIL to the stack s, since (NIL. s) is a dotted pair)



Compilation (LISP)

Built-in Functions

If-then-else

Non-recursive Functions

Aside: all the operations "exist" (i.e. written) in the control stack first because the control stack dictates what
the next instruction is; by definition, the control stack becomes c because that instruction is removed

Aside: logically, then, the whole program must be "loaded" into the control stack; the initial state of the
program

Aside: how can we abstract away auxiliary functions?
Aside: can all these functions be generalized by which stacks they use? Can any of these be characterized
uniquely by that?

Built-in functions: A built-in LISP function (OP e1 ... e2)  is compiled to "SECD language" instructions
(ek' || ... || e' || (OP))

E.g. (* (+ 6 2) 3)  is compiled to (LDC 3 LDC 2 LDC 6 + *)

e1'  … ek'  are the compiled versions of the LISP expressions e1  … ek
As we have come to expect, the "compile function" is recursive

Here, ||  indicates appending instructions together
Note the order of compiled expressions is in reverse; this implies that expressions in SECD are written in
reverse Polish notation

E.g. infix-notated (* (+ 1 2) (- 3 4))  becomes RP-notated 4 3 - 2 1 + *
Aside: RPN is used here because it can be evaluated using a stack structure

If-then-else: the LISP function (if e1 e2 e3)  is compiled to e1' || (SEL) || (e2' || (JOIN)) ||
(e3' || (JOIN))

We are essentially delegating the special if/else  logic to SEL ; we can't implement an if/else statement
that doesn't evaluate both its arguments with functions alone

Aside: does this mean, fundamentally, we need an imperative if (if)? Is that what the "special" if/else
fundamentally isn't

Aside: does conditional logic always need to get delegated down the chain of abstraction until it
reaches assembly branch instructions?

Aside: how does short-circuiting and  and or  work here, since they seem to have similar "special"
status like if/else , but not a special implementation?

Can we implement short circuiting (only) with a special if/else ?

Lambda Functions: A LISP lambda function (lambda (arg1 ...) (body...))  is compiled to (LDF) ||
(body' || (RTN))

Here, body'  is the compiled body  code



Recursive Functions

Note: Generating Indices for Identifiers

RTN  represents a "return" instruction, indicating the function is done
Aside: needing to add this is a consequence of doing a functional → imperative  transform
(compilation)

Function application: A LISP function application (e e1 ... ek)  is compiled to (NIL) || ek' ||
(CONS) || ... || (CONS) || e1' || (CONS) || e' || (AP)

LDF  loads a function from the control to the eval stack

AP  applies a function by
Saving the state of the s, e, and c stacks in the dump stack

Setting the eval stack to NIL  (since whatever is built up there is outside the function body, and
shouldn't affect the function application)

Aside: this is equivalent to jumping to the new place in instruction memory where the function
definition is located

Adding the parameter-argument bindings from the function to the environment

Setting the control stack to the function itself

Aside: parallels can be drawn between this and using JAL  type instructions in assembly

Scoping ( let ) statement: A LISP let  statement (let (x1 ... xk) (e1 ... ek) exp)  is compiled to
(NIL) || ek' || (CONS) || ... || e1' || (CONS LDF) || (e' || (RTN)) || (AP)

Notice the similarity to the function application and lambda function code; the semantics of an
application and a let  expression are essentially the same

Recursive functions: the LISP function (letrec (f1 ... fk) (e1 ... ek) exp)  is compiled to (DUM
NIL) || ek' || (CONS) || ... || e1' || (CONS LDF) || (exp' || (RTN)) || (RAP)

Optional topic: more on that in the notes

The names of identifiers are compiled away; they are accessed in the environment as numbered indices
These are generated in the order the functions are called (i.e. outermost functions have lower indices), and
then by parameter order

So, each identifier is stored as a dotted pair of numbers

E.g. ((lambda (z) ((lambda (x y) (+ (- x y) z)) 3 5)) 6)  compiles to (LD (1.1)), (LD
(1.2)), (LD (2.1))



Lecture 13 - Intro to Logic Programming through Prolog
Prolog Quickstart

Prolog Debugger Overview

Prolog

Grammar

Types of Terms

In Horn clause logic programming, a program is a collection of Horn clauses of the form A ← B1, … , Bn,
where A and Bi are atoms

Computations are deductions in Horn Logic

Prolog is a programming language that implements Horn Logic LP.

Prolog is a declarative programming language; facts and rules are declared, and computations are executed
by running queries on the facts and rules

The syntax of prolog is based on predicate calculus (wikipedia), which is formed of predicates (relations)
over non-logical variables

Unlike "real" predicate calculus, prolog doesn't use quantifiers

An atom/atomic formula p(t1, ..., tn)  is formed of a predicate symbol p  that encodes a predicate
(relation) over terms t1 ... tn

Aside: note that unlike LISP, "atoms" are relations, i.e. compound structures; this reflects "atomicity" in
a logical since (i.e. the predicate as the basic logical unit) as opposed to a syntactic sense. However,
atom is not incorrect syntactically, since terms can only be used in predicates

Constants: numbers (as literals), booleans (i.e. {0, 1}), etc., or lowercase-letter identifiers representing
them abstractly

Aside: the reasoning behind the identifiers could seeing them as enums

Variables: variables with upper-case letter identifiers
Functions f(s1, ..., sk) , where f  is a k -ary function symbol and s1 ... sk  are terms

Functions are used to structure data and define relationships; they are not used for computation
Aside: this means f(s1, ..., sk)  isn't a function application
Aside: the important part is the function symbol and what it represents, not the definition of the
function itself

Aside: A predicate/relation just a boolean function

Aside: functions (and thus predicates) start with a lower-case letter in prolog

Another atomic formula (aaaaaaaaand here's our structurally recursive definition!)

https://www.swi-prolog.org/pldoc/man?section=quickstart
https://www.swi-prolog.org/pldoc/man?section=debugoverview
https://en.wikipedia.org/wiki/First-order_logic


Binding Variables

Program Structure

Facts

Rules

Variables can be bound to values using = , like in many programming languages

However, prolog is unique because it has multiple mechanisms for binding
Aside: I should consider this as a programming language feature

A program is a collection of clauses, which are, in turn, either a fact or a rule

A fact is an concrete assertion, defined as a relation over constants and variables
Also called a unconditional clause because facts are unconditionally true

In a fact, variables are universally quantified (∀), i.e. they can represent anything

A rule is a more abstract assertion, also defined as an implication ( :- , read "if") over any type of term
Also known as conditional clause, because the head (first part) is true on the condition that the body
(second part) is true

acquaintance(X, Y) :- coach(X, Y).

Note that :-  is not exclusive; A :- B  does not imply B :- A . :-  is "if", not "if and only if"

So, A :- B  is equivalent to B ⟹ A for terms A , B ; A :- B  reads " A  if B "
Aside: [logic] just like set-theory operations ∪, ∩,̄  are equivalent to logical operations ∨, ∧, ¬ because
both are boolean algebrae, the set-theory subset ⊆ is equivalent to the logical implication ⟹ ; this is
why a subset A ⊆ B can be defined as x ∈ A ⟹ x ∈ B. Thus, since rules are implications, they are
essentially definitions of subsets

Using relations generally implies using variables, therefore a domain, and thus quantifiers; f(X, Y) :-
g(X, Y)  is equivalent to ∀X∀Y , g(X, Y ) ⟹ f(X, Y )

% "simple" binding
X = 2

% relation over constants
coach(trish, nolan).

% universally quantified statement: everything is awesome
awesome(X).



Conjunction

Facts as Rules

Queries

Rules are most powerful when the use variables, since they parametrize the implication, allowing it to apply
more generally. Unbound variables act as wildcards

Conjunction ( AND ) is achieved using the comma , ; AND ing together terms in the body of an rule makes all
the conditions necessary

Aside: prolog is reflecting natural (english) language here; when listing things, the comma is
semantically equivalent to "and"

So, the general form of prolog rules is A :- B1, B2, ..., Bn , which is equivalent to the logical
(B1 ∧ B2 ∧ ⋯ ∧ Bn) ⟹ A

A fact can be generalized as a rule that isn't predicated on any clauses. Thus, the body of the expression
doesn't have any atoms.

The fact A.  is semantically equivalent to the "rule" A :- true.
Aside: this is analogous to how constants can be conceptualized as a special case of a function with
no parameters

A query/goal, denoted with ?- , is a query (duh) on the value of a (list of) predicate(s) (subgoals); it will
return either true or false

This is where the computation happens in our program; prolog evaluates whether the query follows
logically from the facts and rules defined in the program
Aside: a query is an evaluation of the predicate, mirroring the structure of the interpreter we wrote in
assignment 2

?-acquaintance(trish, nolan).

In the general case, multiple predicates are evaluated, then combined using conjunction using ,
Thus, if one predicate is false , the entire query will be false

?- C1, C2, ..., Ck

In a query, free variables are existentially quantified (∃), since the definition of a query is to find something
that satisfies the query

% X is a banana if it's yellow, a fruit, and bendy
banana(X) :- yellow(X), fruit(X), bendy(X)



Evaluation Algorithm

Code Style for Queries

Aside: does the dichotomy of (fact: universally qualified) and (query: existentially qualified) imply that
facts and queries somehow generalize every possible "form" of expressions with variables?

For goal ?- C1, C2, ..., Ck , we evaluate each subgoal from left to right

We evaluate by finding a clause in the program whose head "matches" the subgoal, replacing the subgoal
with the body of the clause (applying variable bindings if necessary), and (recursively) evaluating that. If the
subgoals are eventually solved, the original goal is as well

Aside: this is like LISP function application

Aside: this is an example analogous to the eval → eval  pattern in the LISP interpreter; this seems to
imply that all of prolog's syntax is (in a sense) syntactic sugar over the logical statements that it implies,
and that the computation happens in the desugaring step!

Aside: with this view, how do we conceptualize facts? like Racket's define-syntax ?

Note that bindings in the current subgoal extend to the next ones, since binding a free (existentially
qualified) variable implies we've found a value that matches the current subgoal; this same value must
satisfy the other subgoals too

It is more ergonomic to define rules that assign your intended query to a function symbol for more readable
testing

p(W) = append([a1, a2], [b1], W).
?- p(a)         % for some constant a



Lecture 14 - Data Structures in Prolog, Unification, Inference
Engine
Data Structures

Lists

Unification
Examples

In theory, prolog doesn't need any built-in data structures; its one built-in structure (the predicate) can
describe any structure, much like LISP's data structures are constructed entirely from dotted pairs

Aside: predicates and dotted pairs are essentially the same structure (a list of two elements (higher
arity predicates can be explained away with currying)); is this the most simple data structure?

We can simply use predicate cons , and proceed like we did in LISP
Aside: what separates the Prolog cons  and the LISP cons ? The fact that there's an in-built
interpretation rule for LISP cons ? Is their difference semantic, syntactic, or something else entirely?

However, for ergonomics reasons, prolog has a built-in list structure
Aside: this is clearly syntactic sugar; what does it desugar to?

In prolog, lists are denoted with square brackets

In the last example, [F|R]  matches F  to the first element of the list and R  to the rest of the list; [A|B]
describes LISP's (cons A B)

We can match more complicated expressions, e.g. [[a, b], c | R]

[a]  is equivalent to [a|[]]

Unification is a two-way matching process between variables and terms, defined in terms of substitutions

A substitution w = {x1/t1, x2/t2, … , xn/tn} is a mapping between distinct variables {x1, … , xn} and terms
{t1, … , tn}.

w(C) denotes the term C ′ obtained from C by substituting all xi in C with the corresponding ti in w

E.g. applying substitution w = {X/b, Y /f(Z)} to term f(X, g(Y))  yields f(b,g(f(Z))) , so w[

f(X,g(Y)) ] = f(b,g(f(Z)))

A unifier of two terms C1, C2 is a substitution w such that w(C1) = w(C2), i.e. makes C1 and C2 identical
under substitution

If such a w exists, C1 and C2 are unifiable

[]           % empty list
[a, b, c]    % list with a, b, and c
[F|R]        % a pattern with F and R

https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564720


Most General Unifier

Unification Algorithm

Example

Step System of Equations Substitution Explanation

1 {p(f(g(X,a)), X) 
== p(f(Y), b))}

{} The equation of the two terms is the only term in the 
system

2 {f(g(X,a)) == 
f(Y), X == b}

{} Both terms follow the structure P(A, B) . Since ,  
defines a conjunction, both pars must be true. So, each 
part is equated in the system, which now has two 
equations

3 {f(g(b,a)) == 
f(Y), b == b}

{X/b} To make the second equation X == b  equal, we 
substitute X/b, so we add it to the substitution. The 
second equation is now equal

4 {g(b,a) == Y,  b 
== b}

{X/b} Both terms in the first equation are wrapped in f, so they 
can be equated without it

5 {g(b,a) == g(b,a), 
 b == b}

{Y /g(b, a), X/b} Finally, we substitute Y /g(a, b) to make the first equation 
equal. Both equations are solved, so the unification is 
complete

Explanation

Aside: unification is an equivalence relation

Unifiers can be obtained from other unifiers by replacing occurrences of variables with terms

However, some unifiers are more general than others; w1 is more general than w2 if w1 can be obtained
from w2 (by variable replacement), but w2 cannot be obtained from w1

Any unifiable t1, t2 have a unique most general unifier (up to variable renaming)

Unification is achieved through iterative pattern matching; we will explain the algorithm through the example
of unifying t1 = p(f(g(X, a)), X)  and t2 = p(f(Y), b)

Prolog couples this with backtracking to evaluate queries

It can be shown that this generates the most general unifier

We start by equating the two terms. Then, we continuously and recursively:

Reduce away "structural equality", i.e. when both terms are wrapped in the same function/predicate. These
terms (possibly multiple) become the new system of equations

Keep repeating the algorithm on each equation in order



Occurs Check

When an equation in the system becomes equating a variable to an term, define the variable to that term
and add it to the substitution, then apply it to every equation in the system

An equation equating a variable with a term containing it can never be unified, since the substitution
continues to propagate that variable in the equation

A substitution can be generated (which prolog will do by default), but it will define the variable in terms
of itself, violating true horn clause logic

Checking for this condition is the occurs check



Lecture 15 - In-built Predicates and Prolog's Inference
Engine
Inference Engine

Built-in Predicates

Arithmetic, Equality, Comparison

In addition to "regular" arithmetic and comparison operators + , - , * , // , < , <= , > , >= , prolog has the
following equality operators

Operator Example Explanation

is X is E True if X  matches the arithmetic expression E . If X  is a variable, then matching 
means X  will be bound to the value of E , implying E  is an arithmetic expression

= X = Y True if X  and Y  are unifiable, i.e. if they can be matched (unified). \=  is the 
negation of this.

=:= E1 =:= 
E2

True if the values of arithmetic expressions E1  and E2  are equal

=\= E1 =\= 
E2

True if the values of arithmetic expressions E1  and E2  are not equal

== T1 == 
T2

True if terms T1  and T2  are identical, i.e. they are syntactically equivalent. The only 
case where this isn't the same as string equality is if there are free variables with 
different names in T1  and T2

\== T1 \== 
T2

True if terms T1  and T2  are not identical, i.e. the negation of ==

Metalogic

Predicate Explanation

var(X) Tests whether X  is uninstantiated, i.e., unbound, i.e. a free variable

nonvar(X) Negation of var(X)

atom(X) Tests whether X  is, or is bound to, an atom (if it's a variable)

integer(X)
number(X)

Tests whether X  is an integer or a number, respectively

atomic(X) Tests with X  is either an atom or a number; is the disjunction of atom  and number

Metalogical predicates reason about characteristics of variables as they relate to the structure of the
language and program execution itself

https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564721


Finding All Solutions

Predicate Explanation

findall(X, Q, 
L)

Binds to list L  a list of all values for X  that satisfies query Q , e.g. findall(X, 
likes(X, Y), L) . X  should parametrize Q

Inference Engine
We discuss inference for Horn clauses, which are simplified versions of "regular" clausal logic. We will use the
syntax of Prolog to express the inference algorithm, but it exists independently.

The resolution principle (or just resolution) is the process by which we find proofs (refutations).

Deriving Goals

We first proceed by attempting to unify the first goal C1  with clause A . If unifier w unifies C1  and A , the new
goal, called a derived goal, becomes:

B1 , ..., Bn , C2 , …, Ck  are the terms that haven't been unified yet, so they become our derived (new) goal.
Notice that we chose to unify the first goal clause C1 ; we will keep doing this to recursively generate derived
goals until we get an empty goal, implying that all the subgoals have been found, and thus a proof exists.

Prolog generates all possible solutions to a query by backtracking through the subclauses, i.e. recursing on
each possible value for each successive clause

The clause findall  can be used to collect all solutions in a list
Similar clauses bagof , setof  exist as well

Aside: what language construct category do these predicates fall into? They seem to affect the
evaluation process; does this make them directives?

Note that in the findall  example, X  gets unified (as per usual), so X  can be any pattern, e.g. (A, B) ,
[A|R] , etc

Resolution is essentially unification + backtracking

Here, we have applied the substitutions in w to B1 , …, Bn , C2 , …, Ck

% Clause (for n >= 0, i.e. possibly no clauses)
A :- B1, ..., Bn

% Goal, with **subgoals** C1, ..., Ck
?- C1, ..., Ck

?- w(B1, ..., Bn, C2, ..., Ck)



Resolution as a Tree search

Since clauses may have different resolutions, each resolution gets searched through backtracking, implying a
tree structure. Indeed, the path from the main goal ?- C1 ...  to ?- w(B1, ..., C2, ...)  is an edge on the
tree; each possible unifier w is a different branch from the root. The resolution of ?- w(B1, ..., C2, ...)  is a
subtree from w's node.

Thus, a successful proof (a refutation) is represented by path from the root to an attempted resolution of an
empty goal, which is a leaf. Note that leaves are either empty goals (successful resolution) or resolution failures,
since these are the only cases that don't derive goals recursively.

A failure occurs when two expressions cannot be unified, e.g. they are non-variables with different values. When
a failure is reached, the algorithm backtracks to the last successful resolution (i.e. the parent node) and
evaluates the next unifier.

The set of root-{empty-goal} paths is the set of solutions to the query; prolog searches through this tree to find
them. Since the resolution algorithm completes the first subgoal before moving on and backtracks on failure, the
tree is searched using depth-first search.

Aside: BFS is not used because it takes up too much space

Aside: this seems to imply that although the order of clauses in the body of another clause doesn't affect the
solutions of the program (i.e. is semantically equivalent), it will dictate the order that they are found.



Aside: once cuts are introduced, the order of the clauses does matter because cuts stop backtracking after
a certain clause



Lecture 16 - Cut, Negation, and a Simple Interpreter
Example of Prolog Problem: The N-Queens problem (eclass)

Notes on eclass

Cut !
In Prolog, the cut !  is a goal that succeeds when first reached, but fails if Prolog attempts to backtrack through
it. So, it forces prolog to commit to the choices made before the cut.

The cut is used to constrain the possible values returned by a predicate appearing earlier, e.g. if we only want to
consider one unification of that clause. It is used to indicate clauses that don't need to be recalculated, often
leading to performance improvements.

Note that since the cut prevents some of the resolution search from happening, the order of the goals (including
the cut) now impacts that actual set of results returned.

Usage Example

In Assignment 3, my clique  predicate was defined as

The cut is where it is so that we don't re-evaluate findall , since every permutation of the list of nodes is a valid
unification to K . However, any order of K  produces the same result, so checking all of them produces the same
result as checking just one. So, the cut is added to prevent backtracking.

We can also use it to prevent "multiple matching" scenario when just one matching is sufficient, like for the
function member .

Here, the first unification of q1, ..., qn  is "locked in" by the cut, but backtracking is allowed in r1, ...,
rn .

Aside: this behavior clearly can't be defined in terms of the syntax we've seen, so it must be doing
something special, and is thus hard-coded into Prolog (i.e. is not surface syntax)

Aside: the cut can be characterized as a pruning of the resolution search tree; branches created by
backtracking are "cut" off.

?- q1, ..., qn, !, r1, ..., rn

clique(L) :- findall(K, node(K), Nodes), !, subset(L, Nodes), connected(L)

% here, we have the cut so that we stop looking once we find the member
% otherwise, the query would return n trues for n occurences of

https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564727
https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564728


Construction of Conditionals

We can use the cut to implement conditional logic. Here, we are expressing if p, then q, otherwise r .

Negation
The negation operator \+  in prolog is equivalent to the logical not ¬.

It can be defined in terms of the cut:

Semantics of Negation

Aside: having a cut as a first goal of a clause makes sure that it is only matched to once

Aside: having a cut as the last goal of a clause makes sure that the first "full" matching to the clause is the
only one that occurs

Aside: this kinda characterizes the cut as an operator that can take "for all" problems (created by the
universally quantified head) and turn them into "there exist" problems by stopping evaluation when one is
found. Is it linked to the difference between the head and body of clauses, i.e. the quantifications?

If p  is unifiable (i.e. true), then we move onto unifying q ; the cut prevents us from backtracking and finding
r . If p  is not unifiable (i.e. false), then we move onto the next clause r  without ever checking q .

Aside: as alluded to in LISP, conditional logic has a special characterization that makes it different from a
regular function: the fact that it can't evaluate all of its arguments (or it won't work). In Prolog, this is
expressed through the special construct of the cut, which is analogous since it prevents evaluation. In fact,
the direct equivalent of a cut in LISP would be some construct that prevented evaluation of a function, which
is the conditional. So, the two are inexorably linked.

not(X) :- X, !, fail.
not(X).

Aside: this follows the form of if-then-else : if X  is true, then not(X)  is false, else not(X)  is true.

Aside: while programming in prolog, it can be useful to use negation to turn "for all" into "there exists". E.g.
in the clique question, it is easer to check if a list is not a clique, since it comes down to if two nodes in the
list don't share an edge, which can be checked with conjunctions, i.e. , .

% X in the list
member(X, [X|T]) :- !.
member(X, [H|T]) :- member(X, T).

x :- p, !, q.
x :- r.



The definition of negation in terms of cut implies that negation is the failure to prove, i.e. \+ P  iff P  is false,
which seems to make sense. However, when variables are involved, this isn't always the case. For example,
consider:

Prolog's Internal Database

Meta-predicates

Prolog has built-in predicates that directly affect the knowledge of the program (i.e. the database) at evaluation
time, so they are useful for the DB.

Name Description

assert(Clause) Adds Clause  to the current program being interpreted. Note that where in the 
program it gets added depends on implementation.
E.g. assert(above(X, Y) :- on(X, Y)) .

asserta(Clause) Inserts Clause  as the first clause for that predicate

assertz(Clause) Inserts Clause  as the last clause for that predicate

clause(Head, Body) Searches the program for a clause whose head matches (i.e. unifies to) Head  (i.e. 
searches for a clause). Head  must not be a free variable.

retract(Clause) The first clause matching Clause  in the program is deleted

retractAll(Clause) Every clause matching Clause  in the program is deleted

Prolog as a Database

These meta-clauses enable us to use prolog like a simple database (which is quite fast), where predicates are
used to encode attributes:

A Prolog Interpreter in Prolog

even(N) :- \+ odd(N), integer(N).
integer(6).
odd(weird).

Here, we might expect ?- even(X)  to produce 6. , but it doesn't. odd(N)  matches only weird , which isn't
an integer, so the query fails.
This is because there is a slight difference between knowing even(6)  is true, and being unable to prove
that odd(6)  is false. Prolog is aware of this, and doesn't equate the two.

Insertion of a tuple: assert(pred(const)).
Deletion of a tuple: retract(pred(X)).
Query tuples: clause(Head, _) .



We can write a prolog interpreter in prolog (homeomorphic spaces, iykyk).

% if we interpret true or the empty goal, the program must be true
interp(true).
interp([]).

% interpreting a list of subgoals is like a conjunction, so we
% defer to the conjunction in prolog (,)
% tail-recursive case of interpreter
% we have a cut so that the interpretation can only happen once
interp([H|T]) :- !, interp(H), interp(T).

% if there is a clause matching our program matching P, we evaluate that
% this is the "search and match" step that prolog takes
% the bindings for P's variables get passed to Y automatically
interp(P) :- clause(P :- Y), interp(Y).

% next, we check if P is a built-in predicate by letting prolog evaluate it directly
interp(P) :- P.

% finally, if this fails, we can't evaluate the goal, so it fails and backtracks



Lecture 17 - Constraint Programming and Satisfaction
What is constraint programming (eclass)

Constraint programming studies models of computation based on constraints, the main idea being that if a set
of constraints can fully characterize a problem, finding a solution to the constraints solves the problem.

Examples of Constraint Problems
The following problems are (most?) efficiently solved using constraint programming.

Cryptarithmetic Puzzles

Cryptarithmetic puzzles are solved by assigning digits to letters (or more broadly, symbols); these symbols are
related by an "equation" like the one below.

N-Queens Problem

N-queens problem: If N  queens are placed on an n × n board, what is the smallest n such that a configuration
exists where no two queens are in the same column or diagonal?

NP-Complete Problems

These include the travelling salesman problem, map-colouring, planning problems, etc.

Constraint programming combines research from fields including AI, Programming Languages, Symbol
Computing, and Computational Logic (!!!!!!!!)
Domains constraint programming have been applied to include graphics, NLP, DBs, Electrical engineering,
etc (more examples in eclass writeup)

Since there are a finite number of digit-number pairings, a solution can always be guessed, but the test and
guess approach is inefficient.

The "equation" is really a set of constraints, so a constraint logic program can solve it more efficiently

    S E N D  
+   M O R E  
--------------  
    M O N E Y

The search space for this problem is very large, but constraint programming can significantly reduce the
amount of it that needs to be searched

https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564731


Constraint-Solving Approaches
When a problem is solved algorithmically, the programmer develops, implements, and runs an algorithm in a
programming language; the work is coming up with this algorithm

When a problem is solved with constraint programming, the programmer must formulate/model the problem in
the underlying language. The "algorithm" part is deferred to the language implementation

The two main constraint programming approaches are Boolean Satisfiability and Constraint Satisfaction, the
latter of which we will study.

Constraint Satisfaction

A solution to a constraint satisfaction problem is an assignment of every variable to a value from its domain in a
way where all constraints are satisfied.

A single constraint is local (i.e. applies to just the variables involved), but a solution to all the constraints is global,
(i.e. involves all the variables). So, a assignment set may satisfy a single constraint, but won't be a solution if it
fails any others.

Systematic Search Algorithms

As alluded to, the generate-and-test paradigm (GT) that generates and test all possible value assignment sets
is strictly correct, but inefficient.

Aside: where does the line between programming language and AI lie? Simply describing a problem (albeit
in a formal way) and having solutions generated seems like something additional to a programming
language.

Aside: what we have been doing in prolog is, although expressed in an unfamiliar way, still algorithmic
programming.

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

1. A set of variables X = {x1, … ,xn}

2. A domain Di, i.e. set of possible values, for each xi ∈ X

These are often consecutive integers, but can be anything, including non-numbers

3. A set of constraints restricting which values variables can simultaneously have

E.g. for variables X,Y ,Z, with domains DX,DY = {1, 2, 3},DZ = {2, 3, 4} and constraints X < Y ,Y < Z, the
assignment set X = 1,Y = 2,Z = 3 is a solution

E.g. the eclass notes contain an expression of the N-queens problem



The backtracking paradigm incrementally attempts to extend partial solutions towards complete ones by
picking the "next" value in the domain for a variable. Backtracking occurs when a constraint-breaking value is
picked.

Consistency Techniques

Constraints and the domains of their variables might make the set of constraints inconsistent, especially if some
variables have already been bound.

Essentially, we are checking for values that are not possible to satisfy at our current place in the backtrack,
implying we shouldn't search through them on this backtracking cycle.

A technique is applied to a constraint to reduce the domain of the variable(s) involved; a domain reduced to ∅
indicates unsatisfiability.

Node Consistency

If a constraint has one unassigned variable (e.g. X > 2 or X = Y  where Y  is bound from previous backtracking),
the variable's domain D can be filtered using the constraint as a predicate, i.e. all d ∈ D not satisfying the
constraint are removed from D

Arc Consistency

If a constraint has two unassigned variables X and Y  and there is some value x for X where there is no value
satisfying Y  in its domain, this x can be removed the domain of X (for this backtrack).

Aside: this mirrors how prolog's resolution solver works
Aside: if an "earlier" variable doesn't affect some contiguous subset of the rest of the variables, work is still
repeated. This suggests a DAG structure and corresponding algorithm could be used to improve the
efficiency

Currently, we only discover an inconsistency when we try to assign variables, which is inefficient.

To improve, we will check for consistency initially and after each new assignment in order to discover values
that aren't possible

Aside: the non-permanent removal of values from the search based on the current backtrack suggests a
stack frame type structure (and therefore a recursive procedure) containing the current "context" (stack
structure is also implied from backtracking)

I.e. all the direct constraints are used to prune the domain for a variable
A CSP where this process (ensuring node consistency) has been applied is node consistent

E.g. for constraints X < Y ,Y < Z from before, X = 3 cannot give a solution for Y , so 3 is removed from the
domain of X, preventing further search. The arc-consistent version of this problem has domains
{1}, {2}, {3} for X,Y ,Z respectively.



More info can be found on the Wikipedia Page for the Constraint Satisfaction Problem

A CSP where this process (ensuring arc consistency) has been applied is arc consistent
Aside: node consistency seems like a base case and arc consistency like an inductive case, implying that a
complete satisfiability check can be done with these two techniques alone through an recursive structure

https://en.wikipedia.org/wiki/Constraint_satisfaction_problem


Lecture 18 - Constraint Logic Programming (CLP)
Topic 18: Constraint Logic Programming (eclass)

Constraint logic programming combines constraint programming and logic programming. In prolog, this can be
achieved by embedding a constraint solver, which replaces prolog's unification process

Constraint solvers are defined by their domains; common ones include finite domains (useful), R, Q, booleans,
etc.

Solving Strategy

Example

Unification in prolog is a constraint solver, where the domains are equations (and thus, equations in prolog
are related by conjunction, disjunction, negation, etc)

Aside: is it correct to say that Prolog is also a constraint solver over N since it has support for equations
over integers (and floating point numbers for that matter)?
Aside: how does differ from a boolean domain? The connectives seem to be the same

So, free variables are given a domain (e.g. R), as opposed to regular prolog where they are simply
uninstantiated. They can't be unified to anything anymore, so the whole program is constrained

Defining a global domain makes satisfiability problems possible and meaningful to solve; in prolog, the
lack of such a domain makes free variables meaningless beyond being able to unify with anything

Aside: how are countably and uncountably infinite domains implemented? I assume some symbolic
computation is necessary

A constraint programming language has a built-in set of primitive constraints, related to its domain. E.g.
for domain R, this might include =, <, >, etc.

All other constraints are representable in terms of the primitive constraints, whether they are defined this
way or compiled into (possibly multiple) primitive constraints

Aside: turning user-defined constraints into primitive ones is an assembly step

Aside: this is directly analogous to the adequate connectives problem for boolean algebra; an
adequate set of connectives is a valid set of primitive constraints because they can build anything. This
implies a boolean algebra solver needs only the NAND  primitive constraint

All the primitive constraints generated in the program are stored in the constraint store
The store is modified as the backtracking process adds and removes additional constraints to the program
Every time the store changes, we check for satisfiability, and backtrack if the program is not satisfiable

% this program is defined over a number system, e.g. the naturals, reals, etc
p(f(X)) :- X > 1, q(X).
q(X) :- X < 5.

https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564732


Step Program Evaluation Constraint Store

1 ?- p(Z) {}

2 X > 1, q(X) {Z = f(X)}

3 q(X) {Z = f(X), X > 1}

4 X < 5 {Z = f(X), X > 1}

5 ∅ {Z = f(X), X > 1, X < 5}

Here, the constraint solver must then be used to determine if {Z = f(X), X > 1, X < 5}  is satisfiable, which
depends on the domain over which it is defined. These particular constraints are satisfiable over R, N, etc.

Constraint Solving in Prolog
Both packages below ( clpr  and clpfd ) come with SWI-prolog.

Solving over R

The clpr  (constraint logic programming over reals) library can be used in prolog to invoke a constraint solver
over R

We program in prolog normally, but enclose constraints we want clpr  to solve in curly braces {}

Solving over Finite Domains

More info on clpfd  can be found in the prolog manual and tutorial page.

Finite domains tend to be the most useful domains to solve constraints over because they are the best at
representing "useful" problems, like scheduling, planning, packing, etc.

Structure of a clpfd  Program

Constraints are defined where regular terms would be in prolog

:- use_module(library(clpr))

% query
?- p(Z).

% here, we want X > 1 to be constraint-solved over the reals
% q(X) should still be solved through unification, since it's a constraint on an equation, 
not a real number
p(f(X)) :- {X > 1}, q(X).
q(X) :- {X < 5}.

https://www.swi-prolog.org/pldoc/man?section=clpfd
https://github.com/triska/clpfd


First, we must load the clpfd  library

Specifying Constraints

The operators of constraints are prefixed with #  to distinguish them from the regular prolog operators.

Both sides of the constraint can be arithmetic expressions, unlike regular prolog.

Restricting Domains

Note: the domains of variables can be constricted in regular prolog as well, e.g. in/2  and ins/2  restrict
variables to being integers. We saw this done with things like number , atom , etc. as well

The in  operator can restrict a value to a range, which is defined with the notation a..b  corresponding to the
range [a, b]. The union operator \/  can be used to join ranges.

The all_different/1  checks if a list of values are all distinct.

An example of the domain restrictions required for the SEND MONEY problem can be found on eclass.

Searching for Solutions

The labelling predicates label/1  and labelling/2  are used to tell the ( clpfd ) solver to solve the given list
of variables, i.e. assign domain values to them in order and backtrack until a solution is found. This process is
called labelling.

E.g. N #\= 0 , A #> B
E.g. for the " SEND MORE MONEY " example:

inf  and sup  can be used in ranges to represent −∞ and ∞, respectively

Aside: are ..  and \/  syntactic sugar or core language features?

:- use_module(library(clpfd))

% notice here how #= is used to define the constraint
% but the regular * and + are used because they are regular arithmetic operations
S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=
M*10000 + O*1000 + N*100 + E*10 + Y.

X in 1..4             % regular range
[X, Y, Z] in 1..4     % list of variables in range
X in 1..4\/10..29     % union of ranges

https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564732


Essentially, labelling is the process that turns constraints into lists of possible bindings for all the variables.

An implementation of label  gives insight into how it works:

Search Control Options

The labelling\2  predicate allows a list of search options/parameters to specify the orders of the variables and
domains to be solved.

Variable order

Name Predicate Explanation

Leftmost leftmost The first variable is selected (default option)

Minimum min The variable with the smallest lower bound is selected

Maximum max The variable with the largest upper bound is selected

First-fail ff The variable with the smallest domain is selected (tiebreaking defers to 
leftmost )

Most 
constrained

ffc Like ff , but tiebreaking defers to the largest number of constraints, then 
leftmost

Constraint order

Name Predicate Explanation

Upward up The constraints are considered in ascending order

Downward down The constraints are considered in descending order

Sometimes, only a few variables need to be searched to assign labels because constraint propagation can
solve the rest

Aside: since the order of the list is the order of evaluation, the order of the solutions depends on this list

label([X, Y, Z]).

mylabel([]).  
% indomain matches if a variable V is in the global domain
% backtracking through it leads to the domain values being matched in increasing order, 
mirroring the labelling structure
mylabel([V|Vs]) :- indomain(V), mylabel(Vs).



Lectures 19, 20 - CLPFD Predicates and Reification
Local Constraints

Arithmetic Constraints

Arithmetic constraints are the same as their prolog counterparts, but prefixed with # : #= , #\= , #> , #< , #>= ,
#=< .

Boolean Operators

Name Operator Explanation

Logical Or #\/ Logical or  connective

Logical And #/\ Logical and  connective

Logical Not #\ Logical not

Implication #==> The logical implication connective, equivalent to (#\ A) #\/ B . #<==  also exists

Equivalence #<==> The logical equivalence connective ("if and only if"), equivalent to (A #==> B) 
#/\ (B #==> A)

Global Constraints
Global constraint predicates have built-in constraint prorogation; they affect the whole program instead of just the
expressions they relate. Generally, their clpfd  implementations are more efficient than their user-defined ones.

Predicates

These operators can turn true / false  values into 1  and 0 ; this is an example of reification.

Aside: the symbols representing or #\/  and and #/\  directly relate to the union ∪ and intersection ∩; in
prolog, these are directly expressed unions and intersections when they relate domains (sets), instead of
predicates. This equivalence can happen because both "things" are instances of boolean algebras

Aside: this implies that something other than just node/arc consistency is going on

alldistinct\1 : checks if a list of domain variables has no duplicate values

sum(+L, +relOp, value)  checks if the sum of list L  is relOp  (e.g. = , \= , > , etc.) the value
Aside: note that because prolog has the "'return value' as parameter" structure, the equality check must
be defined in the predicate instead of being an operator on its own and getting parsed into the AST

Aside: all the prolog predicates we've seen have implicitly had =  as a relational operator, but here we
are specifying it. Why hasn't this been a thing before? We have had more relational operators…



Reification
Reification is the process of turning a constraint into a variable (in clfpd ) that holds the value true  or false .
So, we can explicitly reason about whether the variable (and thus the constraint) is true or not within the program
itself.

In natural language (english), reification is the process of making something abstract more concrete, sometimes
by replacing an abstract concept with a particular instance.

Reification Example - occurs

Aside: this moves the relational operator from the body as a clause relating the variables in the
predicate to an argument of the predicate itself

Aside: The nested expressions → prolog conversion is reverse polish notation; expressions nested
with ()  get "compiled" out into the body of a prolog clause as conjunctions, flattening them

The operators defined in the next section (i.e. the ones prefixed with # ) are used to reify the constraints

Since prolog doesn't have (and is designed in a way that doesn't need) boolean values, booleans are
represented by 0  and 1
Aside: This explicit reasoning about true / false  values in the context of constraints is different than our
predicate-built approach before; this is why things like logical connectives can be defined and used instead
of just predicates: we are reasoning with true  and false  values directly now.

Aside: all clfpd  does is add a domain. What about adding a domain to prolog makes it possible to
have non-built-in logical connectives now?

Aside: this idea needs more consideration

So, "reify" is an antonym to "abstract" or "generalize"

% NOT REIFIED

% query
q(I,L,N) :- length(L,4), L ins 1..10, occur0(I,L,N), label(L).
% predicate: occur0
% defined 
occur0(_,[],0).
occur0(I,[I|L],N) :- N#=N1+1, occur0(I,L,N1).
occur0(I,[J|L],N) :- I #\= J, occur0(I,L,N).

% REIFIED

% query
t(I,L,N) :- length(L,4), L ins 1..10, occur(I,L,N), label(L).
% predicate: occur
occur(I,Vars,N) :- generate_list(I,Vars,L), sum(L,#=,N).
% helper function: generate_list (encapsulates occur0 logic, written in a reified way). The 
generated list is an indicator vector; entries 0 mark "don't occur" and 1 the opposite
generate_list(_,[],[]).



Appendix: General Answer Set Programming Interpretation of Reification

Shoutout to Spencer for explaining this on the discord and providing the example

In ASP in general, reification turns a "regular" program (e.g. a prolog program) and turns it into something that
another program can reason about; this "other program" may be a constraint solver, for example.

An example of reification is below:

Transforming constraints → boolean values happens because (mostly) any program can reason in terms of
boolean values

Aside: this example of reification seems analogous to the assembly (or maybe even compilation step in the
execution of an imperative program); the program is transformed into a form that the underlying interpreter
(?) can use

% we define the check in terms of boolean logic directly
generate_list(I,[A|R],[T|S]) :- (I #= A #==> T#=1), (I #\= A #==> T#=0), 
generate_list(I,R,S).

% non-reified
bagel(1, 2, 3). bread(42) :- bagel(1, 2, 3).

% reified
% aside: what is this representation and how is the reification step implemented?
atom_tuple(0). atom_tuple(0,1). literal_tuple(0). rule(disjunction(0),normal(0)). 
atom_tuple(1). atom_tuple(1,2). rule(disjunction(1),normal(0)). output(bagel(1,2,3),0). 
output(bread(42),0).



Lecture 21 - Answer Set Programming
Answer set programming is a declarative programming paradigm for problem/constraint solving and knowledge
representation.

Much of the following ASP content is similar in concept and syntax to prolog, but they are fundamentally different
things.

In this class, we use the ASP solver clingo.

The ASP Paradigm

Programs

We encode problem instance Q in a program P , expressed as non-monotonic logic. Stable models of P  are
computed by an ASP solver; these correspond to the solutions to Q.

A normal program is a finite set of rules of the form A ← B1 … Bk,  not C1, … ,  not Cn, read "If B1 … Bk are in a
solution but none of the Ci are, then A is in the same solution". The terms A, Bi, Ci are atoms in the underlying
propositional language.

Intended to solve computationally difficult problems, e.g. CLPFD and Boolean Satisfiability
Has roots in Knowledge Representation and Non-monotonic reasoning

Related to propositional satisfiability (SAT), constraint programming, and constraint logic programming

Answer Set Programming

Problems are defined in terms of the rules that govern their actual set of solutions. Stable models or answer
sets are solutions to a problem

This encoding should be "bijective": each solution should have a stable model, and if no solutions exist,
there are no stable models

This is the most basic form of program

not is default negation
Aside: how does this differ from other types of negation.

Ai, not Ci are literals
Aside: because the atoms are defined in an underlying propositional language, this reasoning can be
applied to any propositional language
Aside: formally, what is a propositional language?

Aside: is ← semantically different than :- ?

https://potassco.org/
https://www.swi-prolog.org/man/clpfd.html
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning#:~:text=%22A%20knowledge%20representation%20(KR),than%20taking%20action%20in%20it.%22
https://en.wikipedia.org/wiki/Non-monotonic_logic


Programs can be written with variables to generalize non-ground rules over all the constants in a program. Like
in prolog, variables are denoted with capital letters.

A constraint is characterized by a rule with an empty (false) head; semantically, this rule cannot apply to any
instance, so can't exist in the program at all.

Grounding

A ground program is a program that doesn't contain any variables and has the same answer set as some
original program. Grounding is the process of translating a non-ground program into a ground program.

Examples

If a non-ground program has a finite number of constants and no function symbols, grounding it leads to a
ground program

Function symbols represent functions that are outside of the domain that the ASP solver has to deal with.
So, we almost treat function symbols as symbols that can exist structurally (i.e. hold variables), but don't
hold semantic meaning to the ASP solver (and thus are not evaluated).

Aside: we could also abstract function symbols away as things that can be evaluated into expressions of
variables and values that we can reason about

Example program

bachelor(X) <- person(X),not married(X). 
person(john). person(lily). 
person(ken). 
married(X) <- person(X), person(Y), marry(X,Y). 
marry(john,lily). 
marry(X,Y) <- marry(Y,X).

Program where M1 = {a} and M2 = {b} are both valid answer sets

a <- not b.
b <- not a.

Program with no answer sets due to circular derivation

a <- a.

Constraint: any nodes A  and B  in a graph must have a different color

<- node(A), node(B), color(C), edge(A,B), colored(A,C), colored(B,C).



More examples are in the class slides.

Answer Sets

Essentially, an answer set is a set of attributes on the constants of a program that satisfy all of the rules and facts
of P . A program may have many, one, or no answer sets.

Finding Answer Sets

First, the program is grounded replacing all the variables with variable-free terms and (presumably) instantiating
all the general rules with the appropriate constants to turn them into facts.

Then, an ASP solver is called that turns the rules into a set of models that satisfy it.

ASP Language Features (Lparse)
Sets are denoted with {a1; … ; an} (i.e. with ; delimiters), or {a1, … , an} in earlier LParse syntax.

A cardinality constraint x {a1, … , an} y for x, y ∈ N specifies any subset of {a1, … , an} with size between x and
y inclusive, i.e. x ≤ # {a1, … , an} ≤ y.

Answer Set

An answer set or stable model M of program P  is a subset of the rules of grounded P  that satisfies the
following properties

M satisfies every rule in P

For any rule A ← B1 … Bk,  not C1, … ,  not Cn, a ∈ M if all Bi are in M and no Ci are in M, then the
rule A ∈ M

For any "answer" h ∈ M, there is a corresponding rule h ← B1 … Bk,  not C1, … ,  not Cn, a ∈ M if all
Bi in the program where all Bi are in M and no Ci are not in M

We say h is supported by the rule

Any atom in an answer set must be justified, i.e. supported by a non-circular derivation

Aside: the process of finding an answer set is like "shrinking down" the the rules of the program to a point
where its meaning is defined as a list of constants; these shrunk subsets model the program.

Aside: this is analogous to an assembly step.
LParse is a program that can perform this step for programs written in its standard syntax

Aside: this is analogous to an evaluation step.

Cardinality constraints of the form 0 {a1, … , an} n are called choice constraints and are satisfied by any
subset of {a1, … , an}



Sets can be expressed concisely using the conditional literal a : D, where a is an atom and D is a domain
predicate. Roughly, it specifies the set of atoms a that satisfy the domain predicate D.

ASP vs. Prolog
ASP an Prolog have similar syntax (ASP isn't strictly a language, but the syntax of LParse is a common
standard), but different paradigms.

In Prolog, we define a knowledge base in terms of rules and facts, then run queries over it; computation happens
when "evaluating" these queries by resolution.

In ASP, we still define knowledge and rules, but the program has a solution that it evaluates to, namely the list of
answer sets. ASP is a more faithful adaption of horn clause logic than prolog.

E.g. 1 {setColor(v, C) : color(C)}1 is shorthand for 1 {setColor(v, red); setColor(v, blue); setColor(v, yellow)}1

There are cases where prolog doesn't terminate, but the equivalent ASP program does (aside: what kind of
cases?)



Lecture 22 - Answer Set Planning
Planning is a problem in AI that concerns autonomously finding a sequence of steps (a strategy) to solve a given
problem.

Representing Planning Problems
In a planning problem, we need to represent the following:

For a fixed number of steps, this problem is NP-complete.

Steps in a plan.
Note: we are representing time passing by adding a "timestep" argument in a predicate and
implementing the constraints of time (e.g. it moves forward, etc) manually.

Fluency: properties that are held constant across time by default, unless they are changed by an action.
Here, we define facts with a variable representing time, i.e. matching any time.
These rules are called fluents.

Actions: things that happen at a given time step that change the state of the world
The solution generated is a chronological series of actions

The initial state of the world
We define facts where the timestep is 0.

The goal state of the world
A rule with time as a "parameter" specifying what we want to occur

time(0..steps)                    % steps are integers that start at 0
next-state(T2, T1) :- T2 = T1+1   % integers increment by 1

on(a, table, T)      % objects stay on tables by default.

move-to(a, b, T)     % object a is moved to place by

on(a, b, 0).
on(b, table, 0).

% we define what the goal is
goal (T) :- time(T), on(a,c,T), ...

% we state that the goal must be satisfied



Actions

To generate the sequence of actions that is our solution, we need to know

We also must assume the frame axiom: if an object isn't affected by an action at a given state, then the fluents
must preserve the current state of the object.

The following scheme represents an action system in ASP:

We can define auxiliary predicates to tell us information about the state; these are not used to find the actual
solution.

Aside: Planing Problems as Graphs

Which actions should be chosen under which conditions

Which objects are affected by the action
Any effects the actions have on objects

This is analogous to a side-effect; the state of the program changes. Note that the state of the program
is the product-type containing the states of the objects

Note that we can define that only one action can happen per time step by defining the following conflict
constraint

goal :- time(T), goal(T).
:- not goal.                % not solving the goal is a constraint.

% an action may have pre-conditions that must be met
action(Obj,T) :- pre-conditions. 

% **conflicting actions** can be defined by the constraint that both cannot happen at the 
same time.
% if not specified, then any actions can happen at the same time.
:- action(Obj,T), conflicting-action(Obj,T). 

% we can define if an action affects an object
affected(Obj,T) :- action(Obj,T). 

% an action changes the property of an object 
% this is esentially an action definition
property2(Obj,T+1) :- action(T), property1(Obj,T). 

% fluency
property(Obj,T+1) :- not affected(Obj,T), property(Obj,T)

:- action(Obj1,T), action(Obj2,T). 



We can represent planning problems as a graph.

This lets us use graph-theoretical knowledge and algorithms to solve planing problems.

This interpretation follows from the fact that predicates over a set are inherently a graph structure.

The different states of the world are nodes
Actions are edges connecting the notes, since they change the state.

This also illustrates which actions can't be taken (no edge), which states are unreachable (components
of the graph), etc.

We start at the node representing the initial state; we try to move along edges to reach the node
representing the goal state.

Problem can be solved: path exists both states



Lecture 23 - Foundations of Logic Programming
Notes

1. Syntax of Logic Systems
The syntax of a logical system defines which logical expressions, constructed from logical symbols are legal, i.e.
well-formed.

A given logical syntax contains an alphabet, i.e. a lexicon of the symbols that may be used. These usually
include:

2. Semantics of Logic Systems
The semantics of logic defines the relationships between formulae.

For set of formulae Σ (interpreted as the conjunction 
|Σ|

⋀
i=1

Σi) and formula A, we define the relation Σ ⊨ A to mean

that every way of interpreting (evaluating) Σ that makes it true also makes A true.

For propositional logic, since there are a finite number of possible assignments over propositions (since there are
a finite number of variables), we can simply define logical consequence by constructing a truth table, i.e. testing
every possible value.

3. Inference Rules of Logical Systems
For predicate logic, since we have quantifiers, there may be an infinite number of valuations for a given formula,
so we can't simply use a truth table.

Constants
Functions: defined in some other system the logical system cannot interact with, like arithmetic over N. We
are only concerned with the fact that a symbol representing a function exists; not its actual definition.

Predicates: defined as subsets of A × B × C × …, where A, B, C, … are the arguments of the predicate.

Variables: can represent any constant in the domain, get constrained.
Connectives: operators that operate on and produce truth values.

Quantifiers: operators that operate on members of the domain to produce truth values.

Punctuation: specify the precise meaning of expressions and make them more readable, e.g. ( , ) , , ,
etc. This can also include text like "such that", "where", etc.

We say Σ implies A, A follows from Σ, A is a theorem of Σ, A follows from Σ, etc.

However, this is infeasible in practice: propositions over N  variables have 2N  possible valuations.



Instead, we use an inference system, which consists of a collection of inference rules that can be used to
derive new formulae from existing ones.

4. Predicate Logic
Our main question is what the logical consequences of a horn clause L1 <- L2, ..., Lm  is, where the
variables are all universally quantified (∀).

We define the Herbrand Universe Hu as the set of all "objects" we can use predicates to relate (ground terms);
specifically:

We define a ground atom as any atom whose variables are instantiated by terms in Hu. We can construct the
set of ground atoms that are logical consequences of P  iteratively:

By definition of this process, everything in a given Si is a logical consequence of P .

The remaining material is optional

Lattices and Fixed point Theorem

Inference systems must be sound: new formulae must be logical consequences of the existing ones.

Inference systems may be complete (every logical consequence can be derived), but it is not strictly
required, although it is nice to have.

Resolution is the inference system behind prolog; it is useful for this because it can be performed
mechanically. But more elegant and human-meaningful ones exist.

First, we consider the logical consequences on atoms without variables (ground terms).

Any constant C ∈ Hu

If f is a function with arity n and t1, … , tn ∈ Hu, then f(t1, … , tn) ∈ Hu as well
This function is (presumably) defined outside the logical system, so their actual definition doesn't
matter; all that matters to us is that a function symbol exists

Nothing else is in Hu

We start with the empty set S0

S1 contains any H from P  where H :- B1, ..., Bn  where B1 … Bn are constants in the program.

In general, Sn+1 contains everything in Sn, as well as every instance of a clause H ∈ P  where H :- B1,
\dots, Bn  and B1 … Bn ∈ Sn

This process stops if Sn = Sn+1 for some n

Note: This process may never stop; there may be (and often is) an infinite number of logical consequences
of P .



The Knaster-Tarski fixed-point theorem states that every monotonic operator defined on a complete lattice has
a fixed point that can be computed iteratively by repeatedly applying the operator on the "first" element of the
domain.

This sequence of computational steps can be characterized as the repeated application of an operator to a set,
namely S0. We define this operator as
TP (S) = {a ∣ a ← b1, … , bn is a ground instance of a clause in P , b1 … , bn ∈ S}. We can show that the fixed-point
theorem applies:

The least fixed point of is the set of ground atoms that are logical consequences of P .

I.e. a member of the domain S exists such that T (S) = S for operator T
A lattice is a partial order; completeness implies the existence of a GLB and LUB exist

Monotone: in our case, this means S1 ⊆ S2 ⟹ TP (S1) ⊆ TP (S2), which is trivial



Appendix I - Accumulators

Differences from Tail Recursion

An accumulator is a parameter that is used to accumulate the result of a function, usually by passing
(cons x Acc)  into the recursive call

Often used with a helper function that calls the accumulator version of the function with an empty list for
the accumulator

Simplest accumulator: reverse

(defun reverse (L) (reverse-helper L nil))
(defun reverse-helper (L acc) 

(cond ((null L) acc)))

When the end of the list is reached, the accumulator is returned
The "result" is accumulated here, instead of in the structure of the recursive call

The result of the recursive call isn't part of a list

The "base" recursive pattern results in a backwards* list



Appendix II - Using Prolog
Sample session (eclass)

Prolog debugging (eclass)

Startup
We install SWI-prolog and start it by typing swipl  into the terminal. This opens a session. Prolog can be used
exclusively from the terminal, where each line adds to the program.

To load a program from a file (which is how any development will happen), we type

If the program is valid, it will return true  and print that to the terminal. Otherwise, it will print false . It may also
provide warnings about your program; most commonly, that you have a singleton variable that should be a _
instead.

Queries
Prolog programs define knowledge, and "execution/evaluation" happens by running a query over the program's
knowledge. Prolog prompts you for queries with ?-  in the terminal, once a program has been loaded.

When a query evaluates, it prints the result. If there are more results (i.e. the query can be unified more than one
way, we can press ;  to move through all the results). Once the last result has been reached, the query will
"finish" and prolog will prompt you for another query with ?- .

Debug

Ports

Regular prolog has four ports that describe the steps taken in program evaluation: Call  for predicates getting
evaluated, Exit  when a clause is done being evaluated, Fail  when a predicate cannot be unified, and Redo
when a previously evaluated predicate is evaluated with different bindings after a backtrack.

Here, we do not use the file extension
Aside: as far as I know, this just appends everything in the file to the "session"

Like anything else, queries end with . .

Aside: ;  is prolog's or ; this ties into the fact that a query returning multiple results is a type of disjunction
(i.e. this result or  that result)

[fileName].

https://eclass.srv.ualberta.ca/mod/page/view.php?id=7564717
https://eclass.srv.ualberta.ca/pluginfile.php/10584339/mod_resource/content/8/swi-debug1.pdf


SWI-prolog also has a Unify  port, indicating unification of a clause.

Tracing

We can trace how a program evaluates through all of the ports.

This will show us the port used at each step, and prompt us with what to do next. Use creep  to move to the next
step.

The visibility of each port in the trace can be controlled, which is useful. For example, we might only care about
where the program fails, so we wouldn't look at the Call  port

leash  and spy  can further be used to control which ports are visible.

Exit
Prolog can be exited by pressing e  (for exit) in the terminal ( ^D  also kills the process, but is less graceful).

If a query (or rather, its process) is currently evaluating, it can be stopped by entering a  (for abort); this will give
you debug information and prompt you with another query. This is useful if your program has an infinite loop; you
can get out of it without restarting prolog entirely.

Other
Prolog will guess if you make typos; these are most commonly capitalization errors, but actual mistypes are also
detected. Typos are only detected if they are "close" to an exiting predicate or variable by one of the errors
above. If a typo is detected, it won't execute the program until you either correct it or confirm you want to run the
query you entered.

If we want prolog to fail an undefined predicate (instead of raising an exception), we can declare ?-
dynamic(predicateName)  before we run the rest of the queries. We can also include this in the program, but it
is most useful for debugging.

?- trace, predicate(arg1, arg2, etc...)

?- visible(+port)   # make port visible
?- visible(-port)   # make port invisible



Appendix III - My Final Exam Cheat Sheet
A common problem with making cheat sheets in an instinct to provide as full as summary of the course as
possible. In theory, this maximizes its usefulness for an arbitrary student, but not necessarily for any
particular student. Being aware of this, I created this cheat sheet with my own weaknesses in mind; its
weighting of concepts does not represent that of the course. In particular, it favours logic programming
concepts, since those were less familiar to me at the time.

E.g. (a . nil)  is the same (a)

Simplest form: Representation with the least amount of dots. To get it: Dots .  followed by open parentheses (
and the matching closed one.

Alpha (α) reduction: renaming a variable that is already bound, Beta (β) reduction: given an expression,
replace all occurrences of parameters with the argument specified. Use alpha when beta fails due to a naming
conflict. A lambda expression that cannot be further reduced by beta reduction is in normal form

Normal Order Reduction (NOR): evaluate the leftmost outermost function application f(g(2)) -> g(2) +
g(2) -> 3 + g(2) -> 3 + 3 -> 6 . Applicative Order Reduction (AOR): evaluate the leftmost innermost
function application f(g(2)) -> f(3) -> 3 + 3 -> 6 .

Church Rosser: If A → B and A→C reductions exist, then a D exists where B → D and C → D. Pt 2. If A has
normal form E, then there is a normal order reduction A → E. If a normal form exists, NOR guarantees
termination.

ADD = (λwzsx | ws(zsx)) , T = (λxy | x) , F = (λxy | y) , IF = (λxyz | xyz) , NOT = (λx | xFT) , AND
= (λxy | xyF) , OR = (λxy | xTy) , Y = (λy | (λx|y(xx)) (λx|y(xx)))

A closure is a pair [λ, CT], where λ is a lambda function and CT is a (possibly empty) context, Always ∪CT0.
Lambda functions: evaluate to a closure which contains the function body, variable list, and the context when the
function was defined. Parts of a closure C : params(C) , body(C) , names(C) , values(C)

The evaluation stack is used to evaluate expressions, The environment is used to keep track of bindings, The
control is used to store instructions, The dump is used to store suspended invocation context, i.e. eval that we
will come back to later

Built-in functions: A built-in LISP function (OP e1 ... e2)  is compiled to "SECD language" instructions (ek'
|| ... || e' || (OP))  , If-then-else: the LISP function (if e1 e2 e3)  is compiled to e1' || (SEL) ||
(e2' || (JOIN)) || (e3' || (JOIN)) , E.g. (* (+ 6 2) 3)  is compiled to (LDC 3 LDC 2 LDC 6 + *) , ||
is append, (* (+ 1 2) (- 3 4))  becomes RP-notated 4 3 - 2 1 + * , Lambda Functions: A LISP lambda
function (lambda (arg1 ...) (body...))  is compiled to (LDF) || (body' || (RTN)) , Function
application: A LISP function application (e e1 ... ek)  is compiled to (NIL) || ek' || (CONS) || ... ||

Functions: [function] := (lambda (x) [expression])
Applications: [application] := ([expression] [expression])
Expressions: [expression] := [identifiers] | [application] | [function]
Identifiers: [identifiers] := a | b | c | ...



(CONS) || e1' || (CONS) || e' || (AP) , Scoping ( let ) statement: A LISP let  statement (let (x1 ...
xk) (e1 ... ek) exp)  is compiled to (NIL) || ek' || (CONS) || ... || e1' || (CONS LDF) || (e' ||
(RTN)) || (AP) , (letrec (f1 ... fk) (e1 ... ek) exp)  is compiled to (DUM NIL) || ek' || (CONS) ||
... || e1' || (CONS LDF) || (exp' || (RTN)) || (RAP) , E.g. ((lambda (z) ((lambda (x y) (+ (- x
y) z)) 3 5)) 6)  compiles to (LD (1.1)), (LD (1.2)), (LD (2.1))

For goal ?- C1, C2, ..., Ck , we evaluate each subgoal from left to right, We evaluate by finding a clause in
the program whose head "matches" the subgoal, replacing the subgoal with the body of the clause (applying
variable bindings if necessary), and (recursively) evaluating that. If the subgoals are eventually solved, the
original goal is as well

However, some unifiers are more general than others; w1 is more general than w2 if w1 can be obtained from w2

(by variable replacement), but w2 cannot be obtained from w1. Any unifiable t1, t2 have a unique most general
unifier.

is  arithmetic matching, =  unifiable, =:=  value of arithmetic expressions are equal, =/=  not equal value of
arithmetic, ==  syntactically equivalent. findall(X, Q, L)  Binds to list L  a list of all values for X  that satisfies
query Q , e.g. findall(X, likes(X, Y), L) . X  should parametrize Q

clause A :- B1, ..., Bn , goal ?- C1, ..., Ck , We first proceed by attempting to unify the first goal C1  with
clause A . If unifier w unifies C1  and A , the new goal, called a derived goal, becomes: ?- w(B1, ..., Bn,
C2, ..., Ck) . If the new goal is empty we have found a unifier.

cut !  is a goal that succeeds when first reached, but fails if Prolog attempts to backtrack through it. So, it forces
prolog to commit to the choices made before the cut. having a cut as a last goal in the clause makes sure only
one solution gets returned.

if p, then q, otherwise r : x :- p, !, q. x :- r.  not(X) :- X, !, fail. not(X). (this defines
negation + ).  Negation means definitely false, not unable to prove. So even(N) :- \+ odd(N), integer(N).
integer(6). odd(weird). ?- even(X)  fails

Insertion of a tuple: assert(pred(const)).  Deletion of a tuple: retract(pred(X)).  Query tuples:
clause(Head, _) . assert(Clause)  ( assert(above(X, Y) :- on(X, Y)) ), asserta(Clause) ,
assertz(Clause) , clause(Head, Body) , retract(Clause) , retractAll(Clause)

interp(true). interp([]). interp([H|T]) :- !, interp(H), interp(T). interp(P) :- clause(P :-
Y), interp(Y). interp(P) :- P.

A constraint satisfaction problem has a set of variables, a domain those variables are in, and a set of constraints
over the variables. The constraints can be "assembled" into primitive constraints and put in the constraint store. A
solution is a set of bindings for the variables that satisfy all the constraints.

% here, we have the cut so that we stop looking once we find the member
% otherwise, the query would return n trues for n occurences of
% X in the list
member(X, [X|T]) :- !.
member(X, [H|T]) :- member(X, T).



Node consistency: constraints like X > 2 are checked an values not satisfying them are removed from the
domain. Arc consistency: constraints defined in terms of one variable that remove some from the others
domain. E.g. X < Y , Y < Z from before, X = 3 cannot give a solution for Y , so 3 is removed from the domain of
X, preventing further search. Consistency is checked at every step of. asearch to prune it.

X in 1..4 , [X, Y, Z] in 1..4 , X in 1..4\/10..29 , all_different/1 , label([X, Y, Z]).  label/1
and labelling/2  are used to tell the ( clpfd ) solver to solve the given list of variables, i.e. assign domain
values to them in order and backtrack until a solution is found. Impl: mylabel([]). mylabel([V|Vs]) :-
indomain(V), mylabel(Vs).

Or #\/ , AND #/\ , NOT #\ , implication #==> These operators can turn true / false  values into 1  and 0 ; this
is an example of reification.

We encode problem instance Q in a program P , expressed as non-monotonic logic. Stable models of P  are
computed by an ASP solver; these correspond to the solutions to Q. A normal program is a finite set of rules of
the form A ← B1 … Bk,  not C1, … ,  not Cn, read "If B1 … Bk are in a solution but none of the Ci are, then A is in
the same solution". The terms A, Bi, Ci are atoms in the underlying propositional language. A constraint is
characterized by a rule with an empty (false) head. A ground program is a program that doesn't contain any
variables and has the same answer set as some original program. Grounding is the process of translating a non-
ground program into a ground program.

A cardinality constraint x {a1, … , an} y for x, y ∈ N specifies any subset of {a1, … , an} with size between x and
y inclusive, i.e. x ≤ # {a1, … , an} ≤ y. Conditional literal 1 {setColor(v, C) : color(C)}1 is shorthand for
1 {setColor(v, red); setColor(v, blue); setColor(v, yellow)}1

Planning problems: steps: time(0..steps) , next-state(T2, T1) :- T2 = T1+1 , fluency: on(a, table, T) ,
actions: move-to(a, b, T) , initial state on(a, b, 0).  goal: goal (T) :- time(T), on(a,c,T), ... , goal
:- time(T), goal(T). :- not goal.  the frame axiom: if an object isn't affected by an action at a given state,
then the fluents must preserve the current state of the object.

Sound: new formulae must be consequences of existing ones. This is required, completeness is not. We define
the Herbrand Universe Hu as the set of all "objects" we can use predicates to relate (ground terms); specifically:
An any constant C ∈ Hu, If f is a function with arity n and t1, … , tn ∈ Hu, then f(t1, … , tn) ∈ Hu as well. We
define a ground atom as any atom whose variables are instantiated by terms in Hu. In general, Sn+1 contains
everything in Sn, as well as every instance of a clause H ∈ P  where H :- B1, \dots, Bn  and B1 … Bn ∈ Sn (
S0 is the empty set)


